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1 Introduction

Our goal is to develop a fully automated classification scheme for computer-aided diag-
nosis (CAD) in mammography. Traditional CAD classification schemes, and performance
measurement tools such as receiver operating characteristic (ROC) analysis, are based on
the premise that the observations are classified into two groups, most commonly malig-
nant and benign. Such classification schemes are difficult to fully automate, as they analyze
radiologist-identified lesions; this is because many false-positive (FP) detections produced by
a computerized detection scheme cannot reasonably be classified as benign or malignant. Our
proposed scheme would classify computer detections into three groups: malignant lesions,
benign lesions, and FP computer detections. This method presents considerable difficulties
in terms of both signal detection theory and performance evaluation methods such as ROC
analysis. Our efforts in this direction have thus been more theoretical than practical so far,
but our initial results are promising.

2 Body

A wide variety of medical decision-making tasks, in particular tasks for which CAD has been
proposed as an aid to the physician, can be formulated as "two-group classification" tasks.
That is, the physician must use the information available about a patient (e. g., a set of
mammographic films of the patient, and the result of computer analysis of those images) to
decide whether a patient belongs to a diseased, or abnormal, group or not (e. g., whether a
breast lesion suspicious enough to warrant further imaging procedures or biopsy is present
or not).

ROC analysis has long been considered the most appropriate methodology for evaluating
the performance of a two-group classifier or observer [1], particularly for medical decision-
making tasks [2]. Furthermore, the optimal or "ideal" observer - that observer which
achieves the best possible performance given a particular population of observational data
- has also been well understood for quite some time [3]. In practice, the ideal observer
requires knowledge of the probability density functions (PDFs) from which the observational
data are drawn, and thus cannot be achieved in non-trivial tasks by human or automated
observers. Nevertheless, successful methods for estimating ideal observer decision variables
from a sample of observational data [4], and for plotting an ideal observer ROC curve from
a sample of decision variable data [5], have been developed.

Although the form of the three-group ideal observer has also been known for some time [3],
the development of a practical three-group classifier and a fully general extension of ROC
analysis to three-group classification has proven quite difficult, primarily due to the tremen-
dous increase in complexity encountered when one moves from two-group to three-group clas-
sification tasks. Briefly, characterizing the performance of a three-group classifier requires an
ROC "hypersurface" with five degrees of freedom in a six-dimensional ROC space [6,7] (by
contrast, a two-group classifier is fully described by a simple curve in a two-dimensional ROC
space). Despite these difficulties, our research efforts are focused on the development of a
three-group classifier and performance evaluation methodology for breast lesion classification
in a mammographic CAD system.

We strongly believe the development of such a three-group classifier to be of practical and
not merely academic importance. In the past, two types of mammographic CAD schemes
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have been investigated at the University of Chicago: one for automatically detecting mass
lesions in mammograms [8-12], and one for classifying known lesions as malignant or be-
nign [13-17]. Combining these two types of CAD scheme is inherently difficult, because
the output of the detection scheme will necessarily include FP computer detections in ad-
dition to the malignant and benign lesions to be classified. These FP computer detections
correspond to objects which were by design not included in the training sample of the classi-
fication scheme, because they are not members of the data population (benign and malignant
mass breast lesions) for which the classification scheme was created. It is clear then that
the detection scheme's output cannot be used unmodified as the input to the classification
scheme.

Our approach has been to treat this problem explicitly as a three-group classification
task. That is, the output of the detection scheme should be classified as malignant lesions,
benign lesions, and non-lesions (FP computer detections), and the classifier to be estimated
is the ideal observer decision function for this task. If successful, this approach would allow
radiologists to identify more malignant lesions without increasing biopsy rates for patients
without malignancy.

Our approved Statement of Work is as follows:

Task 1. Develop a three-group classifier for clustered microcalcifications in mammograms, Months
1-12.

(a) Collect cases containing 180 malignant and 180 benign clusters of microcalcifica-
tions.

(b) Determine truth state of imaged lesions by reviewing the images, radiologist re-
ports, and pathology reports for these cases.

(c) Obtain at least 180 FP computer detections from these cases using the existing
detection scheme.

(d) Train and test a three-group classifier on these lesions, using methodology we
previously developed for mass lesions.

Task 2. Design and develop an interface for an intelligent workstation for CAD, Months 11-14.

(a) Examine the most useful features of the interface of the existing intelligent CAD
workstation for mammographic lesion detection.

(b) Examine the most useful features of the interface of the existing CAD schemes in
our laboratory for classifying manually detected lesions as malignant or benign.

(c) Develop a simple interface drawing on the advantages of the existing detection
and classification schemes, extended to the three-group classification task.

(d) Test the interface with non-radiologist observers in our laboratory familiar with
the goals of CAD and with interface design principles.

Task 3. Design and perform a pilot observer study measuring radiologists' performances using
the three-group classification schemes and traditional two-group classification schemes,
Months 15-24.

(a) Recruit radiologists from our institution and neighboring institutions.
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(b) Provide training to the radiologists in the use of the intelligent CAD workstation
interfaces.

(c) Measure radiologist performance using the three-group intelligent workstation,
and using the existing intelligent workstation for detecting lesions followed by
manual selection of lesions to be analyzed by the existing schemes for two-group
classification of lesions.

Task 4. Develop techniques to compare radiologists' performance in using the proposed three-
group and traditional two-group classification schemes, Months 18-36.

(a) Develop methodology to extend two-group ROC analysis to tasks in which obser-
vations are classified into three groups.

(b) Develop methodology to determine the statistical significance of measured differ-
ences in performance between three-group classifiers.

(c) Use this methodology to analyze the observer data obtained in Task 3.

Our research accomplishments to date have focused almost entirely on Task 4. Although the
"methodology we previously developed for mass lesions" [18] was successful for estimating
ideal observer decision variables based on lesion feature data, a practical classifier to make
use of this decision variable data has not yet been implemented. As the difficulties in theo-
retically characterizing the behavior of such a three-group classifier are intimately related to
evaluation of such a classifier's performance (i. e., the development of a three-group extension
to ROC analysis), such a reordering of the approved tasks seems logically justified.

By far the most important result achieved so far was our discovery and proof that an
obvious generalization of the well-known performance metric, the area under the ROC curve
(AUC), is not in fact useful in tasks with three or more groups [19]. (See Appendix A.)
This accomplishment relates directly to Task 4.(b) above, which implicitly requires a well-
defined performance metric with respect to which the statistical significance of differences
in performance may be computed. Although arguably a "negative" rather than "positive"
result - a well-defined performance metric has not yet been found - this result has been
very well received in the observer performance and CAD research communities. First, it
serves as a striking yet typical example of how intuition can often be an unreliable guide in
extending methodology from the two-group classification task to tasks with three or more
groups. Second, it clearly indicates that the search for such a well-defined performance metric
will yield a deeper understanding of the properties of three-group observer performance,
particularly as characterized by ROC analysis.

We stated above that exact determination of the ideal observer's decision variables re-
quires knowledge of the PDFs from which the observational data to be classified were drawn.
The tool we have been using for some time now to estimate ideal observer decision variables
from samples of observational data is the Bayesian artificial neural network (BANN) [20].
In previous simulation studies in which the PDFs of the observational data are known, the
output of the BANN was found to agree with the calculated ideal observer decision variables
for two-group [4] and three-group [21] classification tasks. In practice, one does not have
the PDFs of real observational data, but we previously developed a means of evaluating
three-group BANN decision variables by comparing them with two-group BANN decision
variables obtained from simplified two-group tasks using the same observational data [18].
During the past year, we developed an independent technique for evaluating three-group
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BANN estimates of ideal observer decision variables, again based on theoretical properties
of the three-group ideal observer [22]. (See Appendix B.) This result is important because
the three-group classifier we are developing under the current research will be trained and
tested using feature data from actual mammograms; thus, we will not have access to the
PDFs from which those data are drawn. In addition to three-group ROC analysis methods
to be developed by extension from existing two-group methods [5], it will be beneficial to
have a direct method of judging the ability of the BANN decision variables to accurately
estimate ideal observer decision variables.

In our efforts to develop a three-group classifier and appropriate performance evaluation
methodology, we have made every attempt to keep our analysis as general as possible de-
spite the theoretical difficulties this entails. Other researchers have proposed three-group
methodology by considering observers whose behavior is restricted in particular ways, or
by considering only a subset of the possible performance characterization indices (the axes
of ROC space), or both [23-25]. The inherent complexity of the three-group classification
task makes direct comparison of different methods by different researchers difficult. To fa-
cilitate such a comparison, we evaluated the different methods in terms of the three-group
ideal observer, both in preliminary work [26] (see Appendix C) and later through more in-
depth analysis [27] (see Appendix D). In addition to providing us with valuable insight
and experience in comparing different classifiers, which should ultimately prove directly rel-
evant to Task 4. above, this work also enabled us to present to the observer performance
and CAD research communities a useful framework within which comparison of superficially
very different classifiers can readily be made.

Most recently, we have thoroughly investigated the behavior of the three-group ideal
observer. In particular, it is well-known that the three-group ideal observer makes decisions
by partitioning a plane of two decision variables into three regions using three decision
boundary lines [3]. We showed that the locations and orientations of these decision boundary
lines are not arbitrary; given the slopes and y-intercepts, for example, of two of the lines,
those of the third line are constrained to lie within a particular range of values [28]. (See
Appendix E.) A detailed understanding of such properties of the three-group ideal observer
will prove crucial to the calculation of observer ROC operating points, and by extension to
observer performance evaluation in general. Since the initiation of funding for this project,
the principal investigator and mentor have been holding regular meetings to discuss the
theoretical challenges posed by this project and to explore possible ways of overcoming
those challenges.

3 Key Research Accomplishments

"* Proof that an obvious generalization of the well-known two-group performance metric,
the AUC, is not useful in classification tasks with three or more groups (Appendix A)

" Development of a novel technique for evaluating the quality of BANN estimates of ideal
observer decision variables in the absence of three-group ROC analysis methodology
and observational data PDFs (Appendix B)

"* Analysis of several proposed three-group classification methods in the literature in
terms of the three-group ideal observer (Appendices C, D)
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"* Detailed investigation of the relationships among the decision boundary lines used by
the three-group ideal observer (Appendix E)

4 Reportable Outcomes

"* D. C. Edwards, C. E. Metz, and R. M. Nishikawa, "The hypervolume under the ROC
hypersurface of 'near-guessing' and 'near-perfect' observers in N-class classification
tasks," IEEE Trans. Med. Imag., vol. 24, pp. 293-299, 2005.

"* D. C. Edwards and C. E. Metz, "Evaluating Bayesian ANN estimates of ideal observer
decision variables by comparison with identity functions," in Proc. SPIE Vol. 5749
Medical Imaging 2005: Image Perception, Observer Performance, and Technology As-
sessment, Miguel P. Eckstein and Yulei Jiang, Eds., SPIE, Bellingham, WA, 2005, pp.
174-182. [Conference presentation and proceedings paper.]

" D. C. Edwards and C. E. Metz, "Review of several proposed three-class classification
decision rules and their relation to the ideal observer decision rule," in Proc. SPIE Vol.
5749 Medical Imaging 2005: Image Perception, Observer Performance, and Technology
Assessment, Miguel P. Eckstein and Yulei Jiang, Eds., SPIE, Bellingham, WA, 2005,
pp. 128-137. [Conference presentation and proceedings paper.]

"* D. C. Edwards and C. E. Metz, "Analysis of proposed three-class classification decision
rules in terms of the ideal observer decision rule," J. Math. Psychol., 2005, (submitted).

"* D. C. Edwards and C. E. Metz, "Restrictions on the three-class ideal observer's decision
boundary lines," IEEE Trans. Med. Imag., 2005, (submitted).

5 Conclusions

During the past year we have focused our efforts on theoretical understanding of the behavior
and properties of the three-group classifier. We have proven that an obvious generalization of
the well-known two-group performance metric, the AUC, is not in fact a useful performance
metric for classification tasks with three or more groups. We have developed an evaluation
technique, independent of those we have previously developed, for assessing the ability of
BANN decision variables to accurately estimate ideal observer decision variables. We have
analyzed several recently proposed three-group classification methods in terms of the three-
group ideal observer. Finally. we have shown that the three decision boundary lines used by
the three-group ideal observer are not arbitrary, but are intricately related to one another.

Although these results are theoretical, they are crucial steps in the development of a prac-
tical three-group classifier and a fully general three-group performance evaluation method-
ology. Despite the considerable difficulties involved in such development, a CAD scheme
incorporating a three-group classifier as we propose could potentially allow radiologists to
detect more malignant breast lesions without increasing their FP biopsy rate. We believe
this goal to be worth the necessary effort on our part.
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* The Hypervolume Under the ROC Hypersurface of
"Near-Guessing" and "Near-Perfect" Observers in

N-Class Classification Tasks
Darrin C. Edwards*, Charles E. Metz, and Robert M. Nishikawa

Abstract-We express the performance of the N-class addition to the malignant and benign lesions to be classified.
"guessing" observer in terms of the N 2 - N conditional These FP computer detections correspond to objects which
probabilities which make up an N-class receiver operating char- were by design not included in the training sample of the
acteristic (ROC) space, in a formulation in which sensitivities are classification scheme, because they are not members of the
eliminated in constructing the ROC space (equivalent to using
false-negative fraction and false-positive fraction in a two-class data population (benign and malignant mass breast lesions) for
task). We then show that the "guessing" observer's performance which the classification scheme was created. It is clear then
in terms of these conditional probabilities is completely described that the detection scheme's output cannot be used unmodified
by a degenerate hypersurface with only N - 1 degrees of freedom as the input to the classification scheme.
(as opposed to the N 2 - N - 1 required, in general, to achieve a Our approach has been to treat this problem explicitly as a
true hypersurface in such a ROC space). It readily follows that the
hypervolume under such a degenerate hypersurface must be zero three-class classification task. That is, the outputs of the detec-
when N > 2. We then consider a "near-guessing" task; that is, a tion scheme should be classified as malignant lesions, benign
task in which the N underlying data probability density functions lesions, and nonlesions (FP computer detections), and the clas-
(pdfs) are nearly identical, controlled by N - I parameters which sifier to be estimated is the ideal observer decision function for
may vary continuously to zero (at which point the pdfs become this task. Such an approach presents considerable difficulties of
identical). With this approach, we show that the hypervolume its own. On the one hand, decision functions, in particular ideal
under the ROC hypersurface of an observer in an N-class classifi- itsowehn decision functions, in particular ida
cation task tends continuously to zero as the underlying data pdfs observer decision functions, increase rapidly in complexity with
converge continuously to identity (a "guessing" task). The hyper- the number of classes involved. On the other hand, fully general
volume under the ROC hypersurface of a "perfect" ideal observer performance evaluation methods, in particular a fully general
(in a task in which the N data pdfs never overlap) is also found three-class extension of receiver operating characteristic (ROC)
to be zero in the ROC space formulation under consideration. analysis, have yet to be developed for such a task.
This suggests that hypervolume may not be a useful performance A w
metric in N-class classification tasks for N > 2, despite the Although we have had preliminary success in using Bayesian
utility of the area under the ROC curve for two-class tasks, artificial neural networks (BANNs) [11], [12] to estimate three-

Index Terms-N-class classification, ROC analysis, ROC per- class ideal-observer-related decision variables [13], [14], the
formance metrics, task of developing an extension of ROC analysis to classifica-

tion tasks with three or more classes has proved somewhat more
daunting. Our initial efforts in this direction have, thus, been

I. INTRODUCTION more theoretical than practical so far [15]. One issue we began
E are attempting to develop a fully automated mass to investigate recently was the calculation of an obvious gen-

W lesion classification scheme for computer-aided diag- eralization of the well-known area under the ROC curve (AUC)
nosis (CAD) in mammography. This scheme will combine performance metric, a quantity we are calling the "hypervolume
two schemes developed at the University of Chicago: one for under the ROC hypersurface." Detailed consideration of the in-
automatically detecting mass lesions in mammograms [1]-[5], tegrals involved in calculating this quantity led us to the coun-
and one for classifying known lesions as malignant or benign terintuitive conclusion that, despite the great success and utility
[6]-[10]. Combining these two types of CAD scheme is inher- of the AUC performance metric in two-class classification tasks,
ently difficult, because the output of the detection scheme will the hypervolume under the ROC hypersurface does not appear
necessarily include false-positive (FP) computer detections in to be a useful performance metric in N-class classification tasks

for N > 2. The proof of this claim is arrived at by considering
observer performance in two extremes: the "guessing" observerManuscript received June 23, 2004; revised November 8, 2004. This and the "perfect" observer. It should be explicitly noted that in

work was supported in part by the National Cancer Institute under Grant

ROI-CA60t 87 and in part by the US Army Breast Cancer Research Program our formulation, sensitivities are eliminated in constructing the
under Grant W8IXWH-04-1-0495. The Associate Editor responsible for ROC space; this is equivalent to using false-negative fraction
coordinating the review of this paper and recommending its publication was E. (FNF) and false-positive fraction (FPF) in a two-class task. In
Krupinski. Asterisk indicates corresponding author.

*D. C. Edwards is with the Department of Radiology, The University of such a formulation, the "guessing" observer in a two-class task
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hyperstirface. In Section III, we consider the properties of the of misclassification error is important in medical diagnosis,
ROC hypersurface of a so-called "near-guessing" observer, where different misclassification errors often have substan-
i.e., an observer in a task for which the observational data tially different clinical consequences. Moreover, restrictions
probability density functions (pdfs) are not identical, but differ concerning the observer's behavior are inappropriate when
only by arbitrarily small amounts. In Section IV, we then show considering the general behavior of ideal observers, human
that the hypervolume under the ROC hypersurface of such observers, or automated observers (such as automated schemes
a "near-guessing" observer will continuously approach the for computer-aided diagnosis) designed to approximate ideal
hypervolume under the ROC hypersurface of the "guessing" or human observer behavior. Other researchers have reduced
observer as the observational data pdfs continuously approach the three-class ROC hypersurface to more tractable two-dimen-
identity; furthermore, the hypervolume under the ROC hyper- sional surfaces in three-dimensional ROC spaces by explicitly
surface of the "guessing" observer is shown to be zero. imposing restrictions on the form of the observer's decision

We then show in Section V that the hypervolume under the rule [19], [20], or on the utilities used by an ideal observer
ROC hypersurface of the "perfect" observer is zero (as expected [21]. While such restrictions may ultimately prove to be of
by analogy with the two-class task), and that the hypervolume great pragmatic importance given the inherent complexity of
under the ROC hypersurface of a "near-perfect" observer will multi-class classification tasks, our approach so far has been
approach zero continuously as the observational data pdfs are to attempt as general an understanding as possible of the
separated. Finally, in Section VI, we argue that these results unrestricted classification task.
taken together imply that the hypervolume under the ROC hy- Consider the performance of an observer which makes de-
persurface is not a useful performance metric in N-class classi- cisions by "guessing," that is, in a random fashion unrelated
fication tasks for N > 2, despite the utility of the AUC perfor- to the actual class t from which a given observation is drawn.
mance metric in two-class tasks. (Note that this corresponds to the performance of the ideal ob-

server when the pdfs of the observational data are identical, i.e.,
p(1I rl) = p(:ý1r2) ..... (SP(IrN).) In this case, we
clearly must have

II. THE ROC HYPERSURFACE OF THE N-CLASS "GUESSING"
OBSERVER P12 = P13 =... PlN (1)

The performance of an observer in an N-class classification P 21 = P 2 3 = P2N (2)
task is completely determined by a hypersurface with N 2 - N -
1 degrees of freedom in an (N2 - N)-dimensional ROC space PN1 = PN2 . PN (N-i). (3)
[16]. Without loss of generality, we can specify any point in
the ROC space by a vector of the misclassification probabili- Defining ae AN for 1 < i < N - 1 and aN PN (N-1),

ties [P(d = 7rlIt = 7r2 ),..., P(d = -rIt = 7rN), P(d =fa
721t = rir),P(d = 72 1It = ira), . . .,P(d = 721t we see that the performance of the "guessing" observer is given

7rN),P(d = 7rNIt = 7rN-1),P(d = 7rNIt = 7r1 )]t [151. by a locus of vectors of the form

Here the N classes are denoted by the labels 7r,,... , 7r"N; d de-
notes the class to which an observation is assigned (the "de- a 1
cision"); and t is the class to which it actually belongs (the a 1  N - 1 elements
"truth"). We use boldface type to denote statistically variable
quantities. For simplicity, we write P(d = 7ri It = 7rj) as Pi.

We can also, again without loss of generality, consider the
ROC hypersurface to be given by PN1 considered as a function i
of the other N 2 - N - 1 misclassification probabilities [15]. aij N - 1 elements (4)
Note that this formulation is equivalent, in a two-class classi-
fication task, to using FPF and FNF to characterize the ROC
curve, rather than FPF and true-positive fraction (TPF), as is aN
more common. In a two-class classification task, this produces aN N - 1 elements
ROC curves which are "upside-down" with respect to the stan-
dard formulation; we have adopted the nonstandard formulation L
described above because it has proven easier to generalize to
classification tasks with more than two classes, where all of the ai are restricted to the range [0, 1]. Furthermore,

Some researchers have suggested [171, [18] that in, e.g., a note that
three-class classification task, the set of three "sensitivities"
(P(d = 7ri It = 7ri) in our notation) provides a complete de- N
scription of observer performance. This is incorrect in general, P(d = 7ri) = E PijP(t =7j)
because it ignores the N 2 - N misclassification probabilities, j=1
not all of which are determined uniquely by the "sensitivi- N
ties" when N > 2 unless particular restrictions are imposed = E ai P(t = 7rj)
on the observer's behavior. Complete quantification of the j=1
trade-offs available among the probabilities of various kinds = ai (5)
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which iimmediately gives aN = 1 -- 1 ai. Thus, the per- based on the value of a second decision parameter [17], thus
formance of the "guessing" observer is given by depending on fewer than the five degrees of freedom needed in

P 12  a three-class classification task.) Such "degenerate" observers
P13  will not be considered here (apart from the "guessing" observer

:a itself).
al N - 1 elements We can, thus, define N regions which partition the original

PiN J data space, given particular values of the parameters -t, by

D&(7) M {I: d = 7r, given"} (10)Pil °a}
ai N- 1elements i( ) Y{3: d = i given (11)

Pij {i i4 j}

EDN('y) IS{: d = IrN given '}. (12)
PiN 1 - __ a For a nonrandom observer, the Di can be expected to depend

-1 N--•__1 aj/ N - 1 elements implicitly on the pdfs (7)-(9) and, therefore, on the 6j. The mis-
PN (N-1) classification probabilities which define the ROC hypersurface

: are then given by
L PN1 P f.D, P(YI t = ir2) dni

N-1 P1( fD1 p(SI t = 7r3) dng
= •o + E aj,6i. (6) P13

i=1

This is the parametric equation for an (N- 1)-dimensional plane PiN f•1 P(x t =tN) d
in an (N 2 - N)-dimensional space; the actual performance of
the "guessing" observer will of course be further restricted to a Pi1  f, p(Y I t = 7r,) dnS
region within this plane such that 0 < ai • 1,0 < 1 - E ai <
1. :

Pi3 {$ij} - fv, p(•It=it)d~g {i~j}

III. THE ROC HYPERSURFACE OF AN N-CLASS : :

"NEAR-GUESSING" OBSERVER Ply fD, p(11 t = ry) dnS
Consider observational data •t drawn from N pdfs

p(9[t = i71 ) = p(lt = i"N) + 61h1 (S) (7) PN(N-1) fvNp(Z~t = itN-l)dn

P(YI t = 7r') P P(11 t = WrN) + bj hj (x) (8)PN

p(9 It = 7rg) (9) (13)

where 0 < 6j < 1, f hj(S)dng = 0, and Ihj(9)I < p(9 I t = Using (7) and (8), we can rewrite this as
7rN) for 1 < j < N - 1. In the limit as the 6j all approach PIN+ 62 fD h2(9) dnS
zero, we expect the performance of any observer for this task to P12  N

converge smoothly to that of the "guessing" observer. P 13  P1N + 63 fD 1 h 3 (S) dn

Decisions are made by partitioning the decision variable
space into N regions, determined by a total of N 2 - N - 1 PiN

parameters; we denote these parameters by the components of PiN

a vector 1. An observer which uses more than N 2 - N - 1
parameters for an N-class classification task can always be Pi PiN + 6 1 fvi hi (S) dn

replaced by a simplified observer, such that the "excess" param-
eters are eliminated by the requirement that PNi be minimized, P, { # - PiN + 6• fv. h (:) d {i # j}
thereby collapsing the dimensionality of the parameter space to
N 2 - N - 1. On the other hand, an observer which uses fewer
than N2 - N - 1 decision parameters will fail to generate a APN PAN
true ROC hypersurface-i.e., one with N 2 - N - 1 degrees
of freedom in the (N 2 - N)-dimensional ROC space. (An ex-
ample in a three-class classification task would be an observer PN (N-1) PNN + 6

N-1 fDN hN-1 (S) dny

which sequentially performs a pair of binary classification
tasks by first classifying observations as being "7'r,' or "not
7r1 " based on the value of a single decision parameter, and then PNL PN N + 61 fDN hi (S) d j
further classifying the "not 7r," observations as "7r2 " or "73 (14)
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" Definirig the functions Hij fD, hj (:) d1:5 allows us to sim- where the vectors Oij have components which depend only on

plify the notation slightly Hij. The first term on the right-hand side of this equation is just
P 12  PIN + 62 H12  the expression for the "guessing" observer [cf. the left-hand side
P 13  PIN + 63 H1 3  of (6)]. The other term on the righthand side of this equation

tends to zero as the 6j tend to zero. Note that the Hij may in
general depend on the 6

k via (10)-(12), but
PIN PIN

I J*

••< 1. (18)•)
PhPNN + 6NHN(-1 hs h i rebudd n ilpsss alrepnin

Pij 1i 0 j} PiN + 6bHij suirfc} ogn 1<[ p(9 It = 7rN) d'9
V2i

PiN PiN i PaN
• " < 1.(18)

P(N-1 PN N n b 6N-1 HN(N-1) Thus, the Hij are bounded, and will possess Taylor expansions
• • in 6k (i.e., will not depend on terms of the form 6k-' for posi-

tive integers m). Therefore, operating points on the ROC hyper-
- P1 N- 6HN surface of a "near- guessing" observer tend continuously toward

Now of course PN N = - i=l PiN; for simplicity, we will points on the ROC hypersurface of the "guessing" observer.
write ai =- PiN. Equaation (15) can now be written as Note that the N(N - 1) terms ai, bjHij are not all independent,

P12  aCl + 62H 12  since they all depend implicitly for fixed 6j on the N 2 - N - 1
P13  ai + 63 H13  decision parameters -. That is, the ROC hypersurface given by

(17) possesses only N 2 - N - 1 degrees of freedom.
PIN Oal IV. THE HYPERVOLUME UNDER THE ROC HYPERSURFACE OF

AN N-CLASS "NEAR-GUESSING" OBSERVER
Pi1  a, + 6, H,1  In the preceding section, it was shown that the ROC hyper-

surface of a "near-guessing" observer tends continuously to
Pij {i j}= ai + 6jH 1 {i (16) the ROC hypersurface of a "guessing" observer as the pdfs of

the observational data tend arbitrarily toward identical distri-
butions. Intuitively, one would expect that the hypervolumes

PiN oai under these hypersurfaces should also tend toward each other.
Since intuition can occasionally be an unreliable guide in

P(N-1) 1 -+ - o " 6N--HN(N-1) analyzing N-class classification tasks, it would be reassuring if
the results of the preceding section could be applied directly to

rN-1 the calculation of the relevant hypervolumes.
PN1 1 - = aj + 61HN1 For this section, we will write Pij as Pij(j), emphasizing

which further simplifies to that it is a function of the decision parameters chosen. We, thus,
P12  rewrite (15) to obtain

P1 P PIN(M) + 62H12 (1)0•1I P132(1)

PaN a 1  N - 1 elements P13(1) PIN(!) + 63 H1 3 (

P:N(1 N

P,,i {i :f j} = alN - 1 elements Pi1("7) P .()+6H1~
A IJ

= PiN(1) + 6 1Hi1 (") {i j} . (19)

Z3j c IN -1 elements PhM(~PiN :Pij (1) {i(1+j~j fij .09

-,N-1o-

I- .- 1 6-i•"N ( N)
P(N-1) 17j=) N - 1 elements AN()

PN1PN,(N-1)(17) PN,(N-1)(17)

N--1

+ E 6j,ýj (17) P,()PN,(N-1)(1) -- 6N--lHN(N--1)('Y)
j=1 N 1 "[61HN1 (1)
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•N-1To And the hypervolume under the ROC sur- where PN(N-1) = PNN = 1 - Ej=l P3 N. For a "near-
face given by PN1 considered as a function of guessing" observer, we combine (19) and (22) to obtain
(P 12 , P 1 3 , • . •, Pij,.. ., PN(N-1),.., PN2), one must .. O(P1N+6 2 H1 2 ) ...
evaluate the integral

J JPNld p. (20) .. PN ...

(The domain of the integral is simply the set of all Pij such that
PN1 is defined.) Note that, for the "guessing" observer, we ex- - (PiN+6j3 Hij)
pect this integral to be zero when N > 2 due to dimension- Jnear =a"k
ality considerations-the ROC hypersurface has only N - 1
degrees of freedom (cf. (6)), not the N 2 - N - 1 required in .. N-1)
this (N 2 - N)-dimensional ROC space. To see this explicitly, o0k

one can rearrange the order of integration and consider the in-
nermost integral f PNidPN(N-1) for fixed values of the other ... (PN(N-1)--N--fN(N--)+62HN2)

misclassification probabilities. Then the limits of integration of (24)
this innermost definite integral become, again by (6) From the properties of determinants [22], it can be shown that,J-EPjN PNldPN(N-1) {j < N} (21) to first order in the bi I

1,-ZE P, N N-1

which is zero by inspection. Jnear = Jguessing + E SjJj + (25)

We now return to the general case of a "near-guessing" ob- j=1
server. One way to evaluate the integral in (20) is to reexpress where the Jj are bounded and continuous with respect to the 63.
it explicitly in terms of the decision parameters '7, via the Jaco- If we denote the hypervolume under the ROC hypersurface
bian of the "guessing" observer by

a-"1 073 873 "'" N2-N-1 'guessing J... PNj dN2-N-1P

OP8N 7 87I3 J'' J.. N2PIN PN(N1-)(7)Jguessing dN-N-l' (26)

" ai, : ".1  . :then the hypervolume under the ROC hypersurface of a "near-
j _ ___ & . a guessing" observer becomes, again to first order in the bj

871 32 33 0
8

'N 2_N--1 ff
:. .L-: Y.: .. .1 Inear = I .. N[Pu,(N-1)( )- bN-1HN(N-1)Q7)

OPN(N-1)L)PN( N--) OPN(N--1) ... pN(N-1)
L071 L972 C973 O'Y N2 -N-1 + -- 1

:~ ~~ ~ : ' N2-N-11 27>N [.PN2 PPuessing + N 6J 3 +O "(

871 C9"2 a-"3 
8

"N2_-N-1 j=

(22) N-1

where the vertical bars indicate that the determinant of the en- = 'guessing + E 6A1j + (28)
closed matrix is to be taken, and where -y7 denotes the ith com- j=1
ponent of '. (We assume that indices of the parameters I have where the integrals Ij are bounded (i.e., they may depend on
been chosen appropriately so that no negative sign is introduced, higher integral powers of 6j, but not on 67' for positive integers
i.e., volumes remain positive.) For the "guessing" observer, this m). That is, in the limit as the 6j tend toward zero, Inear tends
reduces to toward 'guessing in a continuous fashion.

Jguessing
i OP N aPN ... oPLN V. THE HYPERVOLUME UNDER THE ROC HYPERSURFACE OF

an 072 87"3 08 "N - N-I AN N-CLASS "NEAR-PERFECT" OBSERVER

In the preceding sections, we established that the hyper-
87P1N P1N 81 . 8P1N volume under the ROC hypersurface of a "guessing" observeris zero, and furthermore that this result is not singular: an

observer in a "near-guessing" task will achieve a ROC hy-ON LP i9i .. aPiN~
o- 9732 873 "" 8

N2 -_N-1 persurface with hypervolume approaching zero continuously
as the data pdfs approach identity. An ideal observer in a
"perfect" task-i.e., in which the data pdfs never overlap-will

081 0-12 87-83 8-'N"NNi also achieve a ROC hypersurface with zero hypervolume,

because it can achieve the operating point 0 and, thus, will
_______ OPN(N-1) ____.N-) _OPN('N- ) not, for any rational decision rule, achieve points interior to

8i 8372 0873 .01N 2-N- I the unit hypercube defining ROC space. It is reasonable to ask
(23) whether "near-perfect" observers, performing tasks for which
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the overlap in the underlying data pdfs is nearly negligible, 1 -

behave similarly to "near-guessing" observers, in the sense N
that the hypervolume under the ROC hypersurface of such an
observer will approach zero in a continuous fashion. • 0.8

Consider observational data r drawn from N pdfs p(9 I t =
7rj) where 1 < j < N. We denote the mean ofp(9fIt = 7rj)
by flj and note that, without loss of generality, the mean of ' 0.6
p(:I t = 7rg) can be taken to be O. Furthermore, note that we 0
can apply a linear transformation to the data ,ý and, thus, effec- *•

tively to the lj, such that each of the resulting flj is either 1) "•
mutually orthogonal to, or 2) a scalar multiple of, any of the o 0.4
other fih. Because the transformation applied is linear, the ideal Z
observer for this task will remain the same, and hence the task 1)
itself can be considered essentially unchanged.

Let us consider now an observer for this task which is gener- 0.2

ally not ideal; in fact, we will consider only a single operating
point achieved by this observer. The observer decides d = 7ri
for a given observation 9 if 01

00 0.2 0.4 0.6 0.8 1
V__ - f _i) " A - fi) < A_ False-Positive Fraction

{j : 1 < j < N, j i i} (29) Fig. 1. Operating point of an observer in a two-class classification task with
coordinates (FPFo, FNFo), denoted by the point at the lower left comer of

with equality for any such relation between two classes being the crosshatched region. Since no rational observer will achieve points in the
crosshatched region, the area under this observer's ROC curve cannot be greaterdecided in an arbitrary but consistent manner. That is, the ob- than 1 - (1 - FPFo)(1 - FNFo).

server places hyperplanes between the means of any two classes
when attempting to decide between those classes (rather than
placing those hyperplanes in the likelihood ratio decision vari- I I are all sufficiently large that this limiting condition is met.
able space, as would the ideal observer). Given this condition, the only situation in which an error prob-

Now suppose the task is made slightly "easier," while the ob- ability P1, (j i i) will fail to decrease is if this probability is
server itself remains unchanged. That is, consider the mean of already zero. By allowing all of the Ifi4 I to increase in the manner
one pdf, say fi4 for i i N, being increased by a factor 1 + 6 for described above, we can clearly obtain in general a situation in
0 < 6 < 1, while the location of the decision hyperplanes does which each of the misclassification probabilities is either de-
not change, except in the special case where fl = afit for some creasing, or equal to zero.
other pdf (again with j i N). In this latter case we increase both This implies that the hypervolume under the ROC hypersur-
means (#j' = (1 + 6)#j, i = (1 + 6)f#i), and the location of faces of the observers under consideration (however we chose
the corresponding decision hyperplane shifts accordingly. to define their decision rules for operating points other than

Note that fZi is now further away from each decision hyper- those described above) must also decrease as the task is made
plane relevant to d = 7ri in (29). In the case ft, = afci, the "easier" as described above. To see this, note that if a given
decision hyperplane is now a distance of 1(flj) - (i)/(2)1 = observer achieves an operating point P on its ROC hypersur-
(1+6)I(f) - (#Z)/(2)1 from X/i. Fornoncollinearfl 3, the direc- face, it cannot achieve another point P' such that the compo-
tion from fti to the decision hyperplane is given by Aj1 - iti, and nents of these points satisfy Pi' > Pj(1 < i < N 2 - N) (be-
since #j{ and fg- are orthogonal, (Xi - j4) . (j - fli) =61,12; cause such an observer could be replaced by an observer which
since this quantity is negative, it follows that fi is further from achieved _P for all such points by using the original decision
that decision plane than fii. rule for the point P, thereby achieving unambiguously better

It immediately follows from this that none of the misclassifi- performance at those points). Thus, knowing that a given ob-
cation probabilities making up the coordinates of the observer's server achieves an operating point of P implies that that ob-
operating point can increase when moving from the old task to server's ROC hypersurface must have a hypervolume under it
the new one. To see this, consider a change of coordinates in of no greater than 1 -NJI - Pt); as the (nonzero) Pi de-
the data space such that fZi is now the origin. All of the deci- crease, this upper limit on the hypervolume must also decrease
sion hyperplanes separating this class from the others are effec- to zero. This point is illustrated in Fig. 1 for the two-class case;
tively moving away from the center of its pdf; since the hyper- here the observer's false-negative fraction, FNFo, corresponds
planes are translating without rotating, we see immediately that to P2 1, and the false-positive fraction, FPFo, corresponds to
the probability Pij cannot decrease (and will increase in gen- P12.
eral), while the other probabilities Pjj (j 5 i) cannot increase To summarize, we have shown that the known operating point
(and will decrease in general). of our simple observer will move closer to the origin for arbi-

Note that any pdfp(:) must decrease more rapidly than ]f -I trary data pdfs as those pdfs are moved further apart (i.e., as
for sufficiently large 191, where n is the dimensionality of '. This the underlying task is made "easier"), implying that the hyper-
allows us to state qualitatively the sense in which the observer volume under its ROC hypersurface will also converge to zero.
under consideration is "near-perfect": we hypothesize that the In fact, reasoning as above, one can see that the ideal observer
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APPENDIX B

Evaluating Bayesian ANN estimates of ideal observer decision
variables by comparison with identity functions

Darrin C. Edwards* and Charles E. Metz
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ABSTRACT
Bayesian artificial neural networks (BANNs) have proven useful in two-class classification tasks, and are claimed
to provide good estimates of ideal-observer-related decision variables (the a posteriori class membership probabil-
ities). We wish to apply the BANN methodology to three-class classification tasks for computer-aided diagnosis,
but we currently lack a fully general extension of two-class receiver operating characteristic (ROC) analysis to
objectively evaluate three-class BANN performance. It is well known that "the likelihood ratio of the likelihood
ratio is the likelihood ratio." Based on this, we found that the decision variable which is the a posteriori class
membership probability of an observational data vector is in fact equal to the a posteriori class membership
probability of that decision variable. Under the assumption that a BANN can provide good estimates of these a
posteriori probabilities, a second BANN trained on the output of such a BANN should perform very similarly to
an identity function. We performed a two-class and a three-class simulation study to test this hypothesis. The
mean squared error (deviation from an identity function) of a two-class BANN was found to be 2.5 x 10-1. The
mean squared error of the first component of the output of a three-class BANN was found to be 2.8 x 10-4, and
that of its second component was found to be 3.8 x 10-'. Although we currently lack a fully general method to
objectively evaluate performance in a three-class classification task, circumstantial evidence suggests that two-
and three-class BANNs can provide good estimates of ideal-observer-related decision variables.

Keywords: Bayesian artificial neural networks, ideal observers, three-class classification

1. INTRODUCTION
In the past, computerized methods for the detection1- 5 and classification6-11 of mammographic mass lesions have
been investigated at the University of Chicago. The classification scheme currently analyzes lesions which have
been manually identified by a radiologist. We are attempting to develop a fully automated classification scheme
by combining the existing detection and classification schemes; we have argued previously12 that this will require
a three-class classifier to account for the presence of false-positive (FP) computer detections, in addition to the
malignant and benign lesions, in the output of the detection scheme.

For some time now we have explored the use of Bayesian artificial neural networks (BANNs) for a variety of
detection5,13,14 and classification"1 tasks in computer-aided diagnosis (CAD). Our motivation for investigating
BANNs is based, first, on our theoretical observation that, in the limit of infinite training data, a BANN will
yield an ideal observer decision function for that data population;15 and second, on empirical observations
that even given a finite sample of training data, a BANN can estimate an ideal observer decision function
reasonably well.16 (We note that the BANN implementation we are using is that of MacKay,17 which employs a
multivariate normal function for the prior distribution on the network weight values.) We have also performed
simulation studies showing that BANNs can accurately estimate ideal observer decision variables in a three-class
classification task.' 5 Moreover, we showed recently that a three-class BANN could produce decision variables for
actual mammographic mass lesion feature data, and that these decision variables are related to two-class BANN
decision variable data in a particular way consistent with a theoretical relationship between three-class and two-
class ideal observer decision variables.12 We consider this to be strong circumstantial evidence for the ability
of a BANN to estimate three-class ideal observer decision variables, though we currently lack a fully general
method for evaluating three-class classifiers (i.e., a three-class extension to receiver operating characteristic
(ROC) analysis).

*Correspondence: E-mail: d-edwardscauchicago.edu; Telephone: 773 834 5094; Fax: 773 702 0371



In this work, we present further circumstantial evidence toward the claim that a BANN can provide good
estimates of three-class ideal observer decision variables. We develop a theoretical relationship between the
a posteriori class membership probabilities of a given observational data variable and the a posteriori class
membership probabilities of those a posteriori probabilities treated as a set of observational data in their own
right. (It is known that a posteriori class membership probabilities are equivalent to ideal observer decision
variables in a two-class task,16 and related in a straightforward way to the ideal observer decision variables in a
task with three or more classes.15) We then describe simulation studies to train and test a set of BANNs, and
present results of such a simulation study verifying that the BANNs we examined did indeed obey the theoretical
relationship predicted for ideal observer decision variables, to within experimental error. In the final section, we
present our conclusions drawn from this work.

2. THEORY

It is well known that the ideal observer decision variable, i.e., the likelihood ratio or any monotonic transformation
of this value, yields optimal performance in a two-class classification task.'8 It can also be shown, in a classification
task with N classes (N > 2), that the ideal observer decision rule becomes more complicated than a simple
threshold on a single decision variable, but that the optimal decision variables remain a set of N - 1 likelihood
ratios.

1 8 , 19

We can define the ith likelihood ratio as

Ai =- LR i(j') =- p(:ý1N), (1)
P(:17rN)'

where 5ý represents statistically variable observational data (which we assume to have dimensionality n), and
rj represents one of the N classes from which the data are drawn (here 1 < i < N - 1). Clearly the vector
(of dimensionality N - 1) of decision variables Ai is itself statistically variable, and one might ask what the
likelihood ratios of these variables are. In fact, 20

P(XAiri) " jf.I PA i) dx N ... dxnj

- . •' (L '"•pj17W) dx N .. dxn, (2)f .3 ' . , j()I •
3

where we have assumed that N - 1 < n; if N - 1 - n, then no integration is performed. (If N - 1 > n, then
at least one of the likelihood ratio decision variables will be expressible as a function of the others; we will not
consider this degenerate case here.) The sum is over all solutions to Eq. 1 for a given A; this yields

p(/.ri) = A-hp(yj 1y) dxN... dxn

= Ai j..J P(j1)dXN...dXn3

= Aip(AI 7N)
P(,Kl~ri) -- LR,(X•) = Aj, (3)

P0( I7rN)

the source of the well-known adage that "the likelihood ratio of the likelihood ratio is the likelihood ratio."

Consider now a different set of decision variables, the a posteriori class membership probabilities considered
as functions of the statistically variable observational data

Yj =- P(7rij:r1). (4)



(Since P(7rNIS) = 1-_ -1 P(wri 1), we still have N- 1 decision variables.) Note that in a two-class classification
task, this decision variable is known to be a monotonic function of the likelihood ratio, and is therefore an ideal
observer decision variable;16 while in a classification task with more than two classes, the a posteriori class
membership probabilities can be shown to be related to the likelihood ratios in a straightforward way.15

Reasoning as above, we may ask what the a posteriori class membership probability of these decision variables,
or P(7rily), is. In fact,

P(7ri l) - p(9ji)P(i)

p(9I)P(7)

kN=1 P(9I7rk)P(7rk)
=LRiý(9)P(Tri)/P(Fry) (5)

+ N-1

1 k=+ LRk(x)P(7rk)/P(7rN)'

and this relation can also be inverted to yield

LRj (9) -=N1P7jY
1- "k=1 P(7rkI•)P(7rk)/P(7rN)

_= N- Yi (6)
1 k=l YkP(7rk)/P(7rN)

We again start with Eq. 2, this time obtaining
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where the sums in j are over all solutions to Eq. 4 for a given Y. (The fraction can be taken out of the integral
because the relations in Eqs. 5 and 6 are one-to-one, and thus the set of all solutions to Eq. 4 correspond to a
single value of LRP (x).) This again yields

LRi(y-) = LRa(9j) (8)

where V is the vector of a posteriori class membership probabilities of 9 from Eq. 4, and Yj is any solution to
that equation for a given Y.

It follows that

P O IM - LRj(Y_) P(7ri) /P(7Ng)

1 k=1 LRk(W)P(7rk)/P(7rN)
Ll•(9j)P(OO)/P7N)

1 k=1 LRk(xj)P(7rk)/P(7rN)

= P(7riI9j) = yi, (9)

where 9j is again any solution to Eq. 4 for a given :. This shows that a similar adage to that for likelihood ratios
holds true, namely that "the a posteriori class probabilities of the (data) a posteriori class probabilities are the
(data) a posteriori class probabilities."



3. MATERIALS AND METHOD

We have shown in the past16 that a BANN can provide good estimates of the a posteriori class membership
probabilities in a two-class classification task, and we have presented the results of simulation studies15 and
experiments with real mammographic feature data12 strongly suggesting that the same holds true for three-class
BANNs as well. The theoretical relationship given by Eq. 9, derived in the preceding section, provides a basis
for another simulation study which should provide further circumstantial evidence for the claim that two-class
and three-class BANNs can provide good estimates of the two- and three-class a posteriori class membership
probabilities (directly related to the ideal observer decision variables via Eq. 5), respectively.

Specifically, for the two-class simulation study, we drew 500 samples pseudorandomly from each of two
distributions:

p(xlir,) N(x; = 1, = 2) (10)
p(Xl r2) -- (x; P2 = 0,U2 =1.(1

We then trained a two-class BANN with one input, five hidden units, and one output on this data, obtaining a
classifier we denote by

y= B(x). (12)

(The superscript denotes the number of classes being classified.) We then used this output, given the known
truth states for the original observations x from which it was obtained, as training data for a second BANN with
one input, five hidden units, and one output:

z 2= (y). (13)

Finally, we pseudorandomly sampled an independent testing set of 500 observations x from each of the two
classes given in Eqs. 10 and 11. This testing set was used as input to the first BANN to obtain a testing set
ytest; this in turn was given as input to the second BANN, for which the output was ztest.

Given Eq. 9, together with the assumption that an adequately trained two-class BANN yields good estimates
of the a posteriori class membership probabilities of the observations being classified, it should be the case that
z test estimates yteSt at least to within experimental error. To verify this, we plotted Ztest as a function of yteSt

for each of the two classes, and we computed the mean squared error

MSE2 = 1_E(Ztest ytest ) 2, (14)MS2=100--0

where the sum is over all the observations in the two classes.

Similarly, for the three-class simulation study, we drew 500 two-dimensional samples pseudorandomly from
each of three distributions:

p(gl~r4 ) N (; i9[= I '1 = .75x2 1) (15)

p(91r2) X; 2 = E2 -1 -. 4.x1.5 (16
2 ,k2= -. 4x 1.5 2.25

P(917[3)0 E3= 1 0]) (17)p(l•) N x;3= 0 ' 0 1

We then trained a three-class BANN with two inputs, five hidden units, and two outputs on this data, obtaining
a classifier we denote by

#= B3(y). (18)

We then used this output, given the known truth states for the original observations 1 from which it was obtained,
as training data for a second BANN with two inputs, five hidden units, and two outputs:

Z= B2). (19)
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Figure 1. Output of the second two-class BANN as a function of its input for the observations actually drawn from class
.7r in the two-class simulation study.

Finally, we pseudorandomly sampled an independent testing set of 500 observations 9 from each of the three
classes given in Eqs. 15-17. This testing set was used as input to the first BANN to obtain a testing set # test;

this in turn was given as input to the second BANN, for which the output was i test.

Again, given Eq. 9, together with the assumption that an adequately trained two-class BANN yields good
estimates of the a posteriori class membership probabilities of the observations being classified, it should be the
case that z~est estimates ytest, and ztest estimates y~est, at least to within experimental error. To verify this, we
plotted ztest as a function of yest and 4 est as a function of ytest, for each of the three classes, and we computed
the mean squared errors 1 E-•,test - yteSt)2,

MSE 3 i = 1500 Y , (20)

{i : 1, 2}, where the sum is over all the observations in the three classes.

4. RESULTS

Figure 1 shows Ztest as a function of ytest for the observations in class 7rj, and Fig. 2 shows Ztest as a function
of ytest for the observations in class 7r 2 from the two-class simulation study. The mean squared error for the
complete set of 1000 observations was 2.5 x 10-4.

Figure 3 shows the components of i test as a function of the corresponding components of W test for the
observations in class in. Similarly Fig. 4 shows the components of Ztest as a function of the corresponding
components of y test for the observations in class 7r 2 , and Fig. 5 shows the components of F test as a function of
the corresponding components of y test for the observations in class 7r 3 . The mean squared error for the complete
set of 1500 observations was 2.8 x 10-4 for the first component and 3.8 x 10-4 for the second component.

5. DISCUSSION AND CONCLUSIONS

We developed a theoretical relationship between the a posteriori class membership probabilities, directly related
to ideal observer decision variables, and the a posteriori class membership probabilities of those a posteriori
class membership probabilities treated as statistically variable observer data in their own right. The identity
relationship found is, perhaps unsurprisingly, quite similar in spirit to the identity relationship between the
likelihood ratio decision variables and the likelihood ratio of those likelihood ratio decision variables for a given
task.
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Figure 2. Output of the second two-class BANN as a function of its input for the observations actually drawn from class
7r2 in the two-class simulation study.
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Figure 3. The (a) first and (b) second components of the output of the second three-class BANN as a function of the
corresponding component of its input for the observations actually drawn from class 7r, in the three-class simulation study.
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Figure 4. The (a) first and (b) second components of the output of the second three-class BANN as a function of the
corresponding component of its input for the observations actually drawn from class 7r2 in the three-class simulation study.
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Figure 5. The (a) first and (b) second components of the output of the second three-class BANN as a function of the
corresponding component of its input for the observations actually drawn from class 7r3 in the three-class simulation study.



We currently lack a fully general method for three-class classification or for practically evaluating the perfor-
mance of a three-class classifier. As a first step toward such a classification method, we are investigating the use
of BANNs to estimate three-class ideal observer decision variables for such a task. Since, in a practical situation,
we will not have access to the underlying probability distributions from which the observational data are drawn,
we must rely on circumstantial evidence in support of our claim that a three-class BANN can adequately estimate
decision variables directly related to ideal observer decision variables.

Previously, we presented work relating the output of a three-class BANN to the outputs of two-class BANNs
trained for various "simplified" cases in which the three-class classification task was reduced to a two-class
classification task, and showed that the relationships found were consistent with the relationship between three-
and two-class ideal observers for the same tasks.1 2 In the present work, we showed that the output of two- and
three-class BANNs was consistent, to within experimental error, with the theoretical relationship developed for
actual a posteriori class membership probabilities. This is of limited practical use in the complete development of
a three-class classifier, mainly because the three-class ideal observer decision rule is considerably more complicated
than its two-class counterpart (a simple threshold on a single decision variable). It does, however, bolster our
confidence in the choice of the BANN as an appropriate tool for estimating the decision variables which would
eventually be incorporated in such a classifier.
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APPENDIX C

Review of several proposed three-class classification decision
rules and their relation to the ideal observer decision rule
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ABSTRACT

We analyzed a variety of recently proposed decision rules for three-class classification from the point of view of
ideal observer decision theory. We considered three-class decision rules which have been proposed recently: one
by Scurfield, one by Chan et al., and one by Mossman. Scurfield's decision rule can be shown to be a special
case of the three-class ideal observer decision rule in two different situations: when the pair of decision variables
is the pair of likelihood ratios used by the ideal observer, and when the pair of decision variables is the pair of
logarithms of the likelihood ratios. Chan et al. start with an ideal observer model, where two of the decision
lines used by the ideal observer overlap, and the third line becomes undefined. Finally, we showed that the
Mossman decision rule (in which a single decision line separates one class from the other two, while a second line
separates those two classes) cannot be a special case of the ideal observer decision rule. Despite the considerable
difficulties presented by the three-class classification task compared with two-class classification, we found that
the three-class ideal observer provides a useful framework for analyzing a wide variety of three-class decision
strategies.

Keywords: ROC analysis, three-class classification, ideal observer decision rules

1. INTRODUCTION

We are attempting to develop a fully automated mass lesion classification scheme for computer-aided diagnosis
(CAD) in mammography. This scheme will combine two schemes developed at the University of Chicago: one for
automatically detecting mass lesions in mammograms,1- 5 and one for classifying known lesions as malignant or
benign.6-10 Combining these two types of CAD scheme is inherently difficult, because the output of the detection
scheme will necessarily include false-positive (FP) computer detections in addition to the malignant and benign
lesions to be classified. These FP computer detections correspond to objects which were by design not included
in the training sample of the classification scheme, because they are not members of the data population (benign
and malignant mass breast lesions) for which the classification scheme was created. It is clear then that the
detection scheme's output cannot be used unmodified as the input to the classification scheme.

Our approach has been to treat this problem explicitly as a three-class classification task. That is, the
outputs of the detection scheme should be classified as malignant lesions, benign lesions, and non-lesions (FP
computer detections), and the classifier to be estimated is the ideal observer decision rule for this task. Such
an approach presents considerable difficulties of its own. On the one hand, decision rules, in particular ideal
observer decision rules, increase rapidly in complexity with the number of classes involved. On the other hand, a
fully general performance evaluation method, such as a three-class extension of receiver operating characteristic
(ROC) analysis, has yet to be developed.

The explicit form of the ideal observer in a three-class classification task has been known for some time.11

For the reasons just stated, however, a practical method for estimating and evaluating observer performance
based on an ideal observer model has proven elusive, despite the success of the two-class binormal ideal observer
model. 12 Nevertheless, pragmatic observer decision rule models for three-class classification tasks have been
proposed relatively recently by several groups of researchers. In some cases, these models are motivated more
by considerations of tractability than of complete generality. This is of course understandable given the inherent
difficulties of three-class classification; however, we thought it might be of interest to analyze a number of recently
proposed three-class decision rule models within an ideal observer decision rule framework.

*Correspondence: E-mail: d-edwards@uchicago.edu; Telephone: 773 834 5094; Fax: 773 702 0371



In the next section, we review the three-class ideal observer decision rule. In the following three sections, we
review recently proposed three-class decision rule models: one by Scurfield,1 3 one by Chan et al.,1 4 and one by
Mossman. 5 In each case, the given decision rule is analyzed in terms of the ideal observer decision rule; where
necessary or expedient, assumptions are made about the observer's decision variables in order to facilitate this
analysis. We emphasize that we do not attempt a review of the experimental methods in the works discussed;
we are specifically interested only in the form of the decision rule which serves as the starting point for each
work. The results of our analyses are briefly summarized in Sec. 6.

2. THE THREE-CLASS IDEAL OBSERVER

It can be shown", 16 that an N-class ideal observer makes decisions regarding statistically variable observations
c by partitioning a likelihood ratio decision variable space, where the boundaries of the partitions are given by

hyperplanes:

decide d = 7ri iff
N-1

S(UWlk - Ujlk)P(t = 7rk)LRk > (UjIN - UijN)P(t = 7rN) {j < i} (1)
k=~1

and
N-1

S(Uilk - Ujlk)P(t = 7rk)LRk > (Viy - UiIN)P(t = IrN) {j > i} (2)
k=1

Here Uijj is the utility of deciding an observation is from class 7ri given that it is actually from class 7rj, and the
N - 1 likelihood ratios are defined as

p (ilt = (3)
LR, -- p lt = 7rN)(

for i < N. We also define the actual class (the "truth") to which an observation belongs as t, and the class to
which it is assigned (the "decision") as d, where t and d can take on any of the values 7ri,... ,ir,..., iry, the
labels of the various classes. (We use boldface type to denote statistically variable quantities.)

The partitioning of the decision variable space is determined by the parameters

Yijk (Uilk - Ujlk)P(t = 7rk), (4)

with i, j, and k varying from 1 to N, and j 5 i. Note that these parameters are not independent, however,
because

'Yijk = Ykjk - Y'k. (5)

We can impose the reasonable condition that the utility for correctly classifying an observation from a given
class should be greater than any utility for incorrectly classifying an observation from the same class, i.e.,
Uili > Ujj {i 5$ j}. This gives, for j 5 i,

I > 0, (6)

leaving N(N - 1) parameters (the rest are derivable from Eq. 5).

Finally, note that the hyperplanes represented by Eqs. 1 and 2 are unchanged if we multiply all of these
equations by a single scalar, such as 1/(••j, jyjj). This leaves us with N 2 - N - 1 degrees of freedom, as
expected.

The behavior of a three-class ideal observer is completely determined by the three decision boundary lines

^121LRj - ,212LR2 = 7,313 - 7Y323 (7)

,131LRI + (7232 - 'Y21 2)LR 2  = 7,313 (8)

(7131 - -Y121)LR, + 9Y232LR 2 = 7Y323, (9)
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Figure 1. Example three-class ideal observer decision rule, given the values of the decision parameters "Y121 = '212 = 3/14
and 7131 = 7313 = -Y232 = 7323 = 1/7. Note yiji =_ (Uili - Uli)P(t = irk).

which we call, respectively, the "1-vs.-2" line, the "1-vs.-3" line, and the "2-vs.-3" line. Note that if any two
of these lines intersect, the third line must also share this intersection point. We also emphasize the simple
interpretation, from Eq. 4, of each of the -liji parameters appearing in these decision boundary line equations
as the difference in utilities between a "correct" and one particular "incorrect" decision (scaled by the a priori
probability of the true class in question); and of each difference in the "Yiji parameters as a difference in utilities
between two possible "incorrect" decisions (again scaled by the a priori probability of the true class in question).

An example ideal observer decision rule for particular values of the utilities Uijj, and hence of the parameters
"yiji, is shown in Fig. 1. Here we have chosen 7121 = 7Y212 = 3/14 and 7131 = 7313 = 7232 = 7323 = 1/7, yielding
the decision boundary lines

3LR1 - 3LR2  = 0 {"1-vs.-2"} (10)
14 14
1 1 1
7-LR, - -4LR 2  = 7 {"1-vs.-3"} (11)

T4LRI + 7LR2  = 7 {"2-vs.-3"}. (12)

These simplify to the equations LR 2 = LR 1 , LR 2 = 2LR1 - 2, and LR 2 = LR 1/2 + 1, respectively.

3. THE SCURFIELD DECISION RULE

Scurfield investigated a decision rule applied to two-dimensional statistically variable data (Y - (Y1, Y2)) drawn
from three classes.13 The application domain was human observer performance modeling for acoustical psy-
chophysics experiments. (In prior work, Scurfield investigated a decision rule for three-class classification of
univariate data.17 We will not review that prior work here, because at present we are interested in relating given
observer models to the three-class ideal observer model for multivariate observational data, which yield two-
dimensional decision variable data by Eq. 3.) In Scurfield's work, no assumptions are made about the decision
variables Yi and Y2; in particular, these decision variables are not assumed to be related in any way to an ideal
observer model. This is entirely ,appropriate given the nature of the problem domain Scurfield investigated -
i.e., human observer performance modeling. It can readily be shown, however, that if one chooses to make such
assumptions, special cases of the Scurfield model are in fact special cases of an ideal observer decision rule.
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Figure 2. Decision rule investigated by Scurfield, for the decision parameters y1 and y2.

The Scurfield decision rule is dependent on two decision parameters, which we will call -yj and y2. The
decision rule can be written as

decide d = 7r iff Y1 - Y2 Ž'71 -- 2 and yl yi; (13)
decide d = r 2  iff Y1 - Y2 < 71 -- 2 and Y2 7_2; (14)

decide d = 7r3 iff Y1 <y7 and Y2 < Y2. (15)

This decision rule is illustrated in Fig. 2.

From these relations, one can define the decision boundary lines

Y -Y2 = 71 - 72 {"l-vs.-2"} (16)

Y1 = 1 {"1-vs.-3"} (17)
Y2 = 'y2 {"2-vs.-3"}. (18)

Note the similarity in form between these equations and Eqs. 7-9. If we choose Yl =_ LRB(R) and Y2 LR2(S()
for some set of observational data •7, we have a special case of Eqs. 7-9, which is illustrated in Fig. 3.

A second correspondence between Scurfield's decision rule and the ideal observer decision rule can be obtained
by taking yj =_ log(LRl(S)) and Y2 log(LR 2 (R)); note that a line of the form log(LR 2 ) = log(LR1) + ce
corresponds to a line of the form LR 2 - ,6LR 1 for appropriate constants a and 0. By inspection, this is again a
special case of Eqs. 7-9, which is illustrated in Fig. 4.

Scurfield points out 13 that the observer which maximizes PC, the "percent correct" or probability of a
correct response, is a special case of the ideal observer (i.e., a single operating point achievable by the ideal
observer for the given task). This observer follows the Scurfield decision rule model with yl - log(LRi(i)) and
Y2 - log(LR 2 (5)), and decision parameters given by elf = P(7r3 )/P(7rl) and eY2 = P(ir3)/P(7r2). It is interesting
to note that the Scurfield decision rule model can in fact be used to describe ideal observer performance for an
even wider class of operating points, as shown in this section.

4. THE CHAN DECISION RULE

Chan et al. are investigating three-class classifiers for computer-aided diagnosis. 14 Their work is motivated by
reasoning similar in principle to that which we independently arrived at when we began to consider this problem.
In particular, they consider a clinical situation in which observations must be classified as malignant, benign,
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Figure 3. A special case of the ideal observer decision rule, which is a special case of the Scurfield decision rule with
y, =- LR1 (5E) and Y2 - LR 2 (i).

LR 2

"727r2"

"7r3" I 71-1

e&y1 LRI

Figure 4. A special case of the ideal observer decision rule which is a special case of the Scurfield decision rule with
YI = log(LRa(•)) and Y2 = log(LR 2 (R)).
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Figure 5. The decision rule investigated by Chan et al., which as they state is a special case of the ideal observer decision
rule. Observations in the unlabelled region are decided "not ir3", i.e., either "in" or "W21.

or normal. Because the goal of their work is to optimize the performance of a system to aid a radiologist or
clinician, rather than to measure the psychophysical performance of an existing observer, they choose to start
explicitly from an ideal observer model in constructing their decision rule.

In order to reduce the complexity of the ideal observer decision rule to manageable proportions, Chan et al.
impose restrictions on the utilities used by their observer. In their formulation, the class we are labelling 7r, is
the benign class; 7r2, the normal class; and the malignant class is 7r3 . They further assume that the possible
values of any utility Uijj are restricted to the interval [0, 1]. They then set U111 = U2 12 = U3 13 = 1 (i.e., correctly
identifying any case has maximal utility). Furthermore, they require U211 = U112 = 1 and U113 = U2 13 = 0
(i.e., misidentifying a benign case as normal, or vice versa, has no significant cost reducing the utility of such a
decision from the maximum, but misclassifying an actually malignant case as benign or normal has the minimum
possible utility). Finally, U311, and U3 12 are assumed to have arbitrary values on the open interval (0, 1) (i.e.,
misclassifying an actually non-malignant case as malignant will have some cost reducing the utility of such
a decision from the maximum, but such a misclassification is in some sense "better" than missing an actual
malignancy). It is important to note that these assumptions are arguably relevant to a reasonable model of a
clinical situation, and are thus of interest beyond their superficial advantage in reducing the degrees of freedom
involved in the observer's decision rule. We will, however, only consider the latter issue in the remainder of this
section.

Substituting the values of the utilities given above into Eq. 4, we obtain decision boundary lines of the form

OLR, + 0LR 2  = 0 {"1-vs.-2"} (19)
(1 - U311)P(t 7rl) (1 - U 3 1 2 )P(t = 7r2) P(t = 73 )

SLR 1 +-vs."} (20)

(1 - U31 )P(t = L) (1 - U312 )P(t = 7r2 ) LR2 P(t = 73 ) {"2-vs.-" (21)(1 U1)~ lLR 1 + _R P= 73

a a a

where a =_ 1 + P(t = 7r3) - U3 11P(t = 71) - U312P(t = 7m2). Note that, as Chan etal. point out, the "1-vs.-2"
line is in fact undefined for this choice of utilities, while the "1-vs.-3" and "2-vs.-3" lines are identical. This is a
general consequence of Eqs. 7-9; if any two of these equations yield identical lines, the third line must be either
identical to them or undefined. The decision rule considered by Chan et al. is illustrated in Fig. 5.
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Figure 6. Decision rule investigated by Mossman, for the decision parameters a and 3, shown in the a posteriori class
probability space.

5. THE MOSSMAN DECISION RULE

Mossman investigates a decision rule applied to a set of three decision variables Yl, Y2, and Y3, subject to the
constraint

Y1 + Y2 + Y3 = 1, (22)

as well as 0 < yi < 1 {i < i < 3}. This is consistent with the constraint on the a posteriori class probabilities,
P(ir, I) + P(ir 2 15) + P(7r31Ij) = 1; these quantities are known to be directly related to the likelihood ratio ideal
observer decision variables.18,19 (In this section we will write P(7rilg) instead of P(t = 7ril) for simplicity.)
Mossman does not explicitly require, however, that the decision variables in Eq. 22 be the a posteriori class
probabilities (e.g., they may be noisy estimates of these quantities).

The decision rule considered by Mossman, which depends on two decision parameters a and )3, is

decide d = 7r iff Y2 - Y1 _•13 and Y3 :a a; (23)

decide d=7r 2 iff Y2-Y1 >/)3 and Y3<a; (24)

decide d = 7r3 iff Y3 > a. (25)

where 0 < a < 1 and -1 _< 0 < 1. From these relations, and given the relation Y3 = 1 - YI - Y2 from Eq. 22,
one can define the decision boundary lines

Y1 - Y2 = -/ {"l-vs.-2"} (26)

Yi+Y2 = 1-a {"1-vs.-3"} (27)

Y1 + Y2 = 1- a {"2-vs.-3"}. (28)

This decision rule is illustrated in Fig. 6. Note that, similar to the Chan et al. decision rule, the "1-vs.-3" and
"2-vs.-3" decision boundary lines are identical.

We now consider a special case of the Mossman decision rule in which y, = P(7iREI), Y2 = P(721xý), and
Y3 = P(7r3 l:I) for some observational data vector 5. This version of the decision rule is illustrated in Fig. 7.

Although the Mossman decision rule appears similar in form to the ideal observer decision rule, recall from
Sec. 4 that if two of the decision boundary line equations are identical, the third must yield a line identical to
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Figure 7. Decision rule investigated by Mossman, for the decision parameters a and 3, shown in likelihood ratio space.

the first two or be undefined. Another way to see this is to note that the coefficients of Eq. 9 are differences of
the corresponding coefficients of Eqs. 7 and 8. If the coefficients of Eqs. 8 and 9 are identical, it must be the case
that the coefficients of Eq. 7 are all zero. For the Mossman decision rule, this would require 1 + 0 = 0, 1 -/3 = 0,
and 3 = 0 simultaneously, which is clearly impossible. It follows that the decision rule considered by Mossman
cannot represent possible ideal observer performance for any choice of the utilities Ujlj in Eqs. 1 and 2.

6. DISCUSSION AND CONCLUSIONS

We examined three decision rules proposed recently for three-class classification tasks by different researchers.
The basis for our evaluation was ideal observer decision theory, primarily because our own interest in the three-
class classification task is its possible application to CAD.

Although this is not the most general approach to three-class classification, the three-class classification task
is difficult enough that it is perhaps worth making any attempt to analyze, from a single point of view, the work
of the relatively few researchers investigating this problem.

In particular, Scurfield points out 13 that his proposed decision rule is in fact an ideal observer decision rule
for a single ideal observer operating point, namely the observer which maximizes the probability of any correct
response (or "percent correct" or Pc). We were able to show that, under various assumptions, a larger set of
such correspondences between the Scurfield observer and the ideal observer exists.

Chan et al. are working on the application of three-class classification to CAD, and thus explicitly take
the ideal observer as the starting point in the development of their decision rule. 14 Although this rendered our
analysis of that decision rule in terms of ideal observer decision theory largely trivial, it provided an intuitive
basis for understanding the results of similar analysis of the Mossman decision rule, namely the conclusion that
the latter does not correspond to ideal observer behavior for any possible values of the utilities used by the ideal
observer. However, we note that the structure of the Mossman decision rule - a simple sequence of thresholds
on single decision variables - may indeed serve as a reasonable model for human observer performance in certain
situations, e.g., differential diagnosis.
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"APPENDIX D

Analysis of proposed three-class classification
decision rules in terms of the ideal observer

decision rule*

Darrin C. Edwardst and Charles E. Metz

Department of Radiology, The University of Chicago, Chicago, IL 60637 USA

Abstract

We analyze recently proposed decision rules for three-class classification from the
point of view of ideal observer decision theory. We consider three-class decision
rules proposed by Scurfield, by Chan et al., and by Mossman. Scurfield's decision
rule is shown to be a special case of the three-class ideal observer decision rule in
three different situations. Chan et al. start with an ideal observer model and specify
its decision-consquence utility structure in a way that causes two of the decision
lines used by the ideal observer to overlap and the third line to become undefined.
Finally, we show that the Mossman decision rule cannot be a special case of the ideal
observer decision rule. Despite the considerable difficulties presented by the three-
class classification task, the three-class ideal observer provides a useful framework
for analyzing a variety of three-class decision strategies.

Key words: ROC analysis, three-class classification, ideal observer decision rules

1 Introduction

We are attempting to develop a fully automated mass lesion classification
scheme for computer-aided diagnosis (CAD) in mammography. This scheme
will combine two schemes developed at the University of Chicago: one for
automatically detecting mass lesions in mammograms (Bick, Giger, Schmidt,
Nishikawa, Wolverton, and Doi, 1995; Yin, Giger, Doi, Metz, Vyborny, and
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Schmidt, 1991; Yin, Giger, Vyborny, Doi, and Schmidt, 1993; Yin, Giger, Doi,
Vyborny, and Schmidt, 1994; Kupinski, 2000), and one for classifying known
lesions as malignant or benign (Huo, Giger, Vyborny, Wolverton, Schmidt, and
Doi, 1998; Huo, Giger, and Metz, 1999; Huo, Giger, Vyborny, Wolverton, and
Metz, 2000; Huo, Giger, and Vyborny, 2001; Huo, Giger, Vyborny, and Metz,
2002). Combining these two types of CAD scheme is inherently difficult, be-
cause the output of the detection scheme will necessarily include false-positive
(FP) computer detections in addition to the malignant and benign lesions to
be classified. These FP computer detections correspond to objects which were
by design not included in the training sample of the classification scheme,
because they are not members of the data population (benign and malignant
mass breast lesions) for which the classification scheme was created. It is clear
then that the detection scheme's output cannot be used unmodified as the
input to the classification scheme.

Our approach has been to treat this problem explicitly as a three-class classifi-
cation task. That is, the outputs of the detection scheme should be classified as
malignant lesions, benign lesions, and non-lesions (FP computer detections),
and the classifier to be estimated is the ideal observer decision rule for this
task. Such an approach presents considerable difficulties of its own. On the
one hand, decision rules, in particular ideal observer decision rules, increase
rapidly in complexity with the number of classes involved. On the other hand,
a fully general performance evaluation method, such as a three-class extension
of receiver operating characteristic (ROC) analysis, has yet to be developed.

The explicit form of the ideal observer in a three-class classification task has
been known for some time (Van Trees, 1968). For the reasons just stated, how-
ever, a practical method for estimating and evaluating observer performance
based on an ideal observer model has proven elusive, despite the success of
the two-class binormal ideal observer model (Metz and Pan, 1999). Never-
theless, pragmatic observer decision rule models for three-class classification
tasks have been proposed relatively recently by several groups of researchers.
In some cases, these models are motivated more by considerations of tractabil-
ity than of complete generality. This is of course understandable given the
inherent difficulties of three-class classification; however, we thought it might
be of interest to analyze a number of recently proposed three-class decision
rule models within an ideal observer decision rule framework.

In the next section, we review the three-class ideal observer decision rule. In
the following three sections, we review recently proposed three-class decision
rule models: one by Scurfield (1998), one by Chan, Sahiner, Hadjiiski, Petrick,
and Zhou (2003), and one by Mossman (1999). In each case, the given decision
rule is analyzed in terms of the ideal observer decision rule; where necessary
or expedient, assumptions are made about the observer's decision variables in
order to facilitate this analysis. We emphasize that we do not attempt a review
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of the experimental methods or proposed performance evaluation metrics in
the works discussed; we are specifically interested only in the form of the
decision rule which serves as the starting point for each work. The results of
our analyses are briefly summarized in Sec. 6.

2 The Three-Class Ideal Observer

It can be shown (Van Trees, 1968; Edwards, Metz, and Kupinski, 2004b)
that an N-class ideal observer makes decisions regarding statistically variable
observations i by partitioning a likelihood ratio decision variable space, where
the boundaries of the partitions are given by hyperplanes:

decide d = "fi iff
N-1

S(Uiilk - Ujlk)P(t = "fk)LRk _Ž (UjIN - UiIN)P(t = 7rN) {j < i} (1)
k=1

and
N-1

S(Uilk - Ujlk)P(t = irk)LRk > (UjlN - Uil)P(t =iN) {j > i}. (2)
k=1

Here Uljj is the utility of deciding an observation is from class riw given that it
is actually from class 7rj, and the N - 1 likelihood ratios are defined as

-I(•t =7rik)
LRk =- = (3)

p -it = 7rN)

for i < N. We also define the actual class (the "truth") to which an observation
belongs as t, and the class to which it is assigned (the "decision") as d, where t
and d can take on any of the values ir, . . , iri,... , 7rN, the labels of the various
classes. (We use boldface type to denote statistically variable quantities.) For
simplicity, we will usually write irk to denote the event t = 7rk, as in the a
priori probability P(7rk).

The partitioning of the decision variable space is determined by the parameters

-Yijk (Vilk - Ujlk)P(7wk), (4)

with i, j, and k varying from 1 to N, and j 54 i. Note that these parameters
are not independent, however, because

Yijk = Ykjk - Ykik. (5)
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We can impose the reasonable condition that the utility for correctly clas-
sifying an observation from a given class should be greater than any utility
for incorrectly classifying an observation from the same class, i. e., Uili >
UjlI {i = j}. This gives, for j = i,

'iji > 0, (6)

leaving N(N - 1) parameters (the rest are derivable from (5)).

Finally, note that the hyperplanes represented by (1) and (2) are unchanged
if we multiply all of these relations by a single scalar, such as 1/((ioj -yiji).
This leaves us with N 2 - N - 1 degrees of freedom, as expected.

The behavior of a three-class ideal observer is completely determined by the
three decision boundary lines

7 121LRI - 7 212LR 2 = 7'313 - 'Y323 (7)
y131LRi + (0Y232 - 7 212 )LR 2 = 7313 (8)

(7131 - 7 12 1)LR, + 7 232 LR 2 = 7323, (9)

which we call, respectively, the "l-vs.-2" line, the "1-vs.-3" line, and the "2-
vs.-3" line. Note that if any two of these lines intersect, the third line must
also share this intersection point. We also emphasize the simple interpretation,
from (4), of each of the -iji parameters appearing in these decision boundary
line equations as the difference in utilities between a "correct" and one partic-
ular "incorrect" decision (scaled by the a priori probability of the true class in
question); and of each difference in the 'yji parameters as a difference in util-
ities between two possible "incorrect" decisions (again scaled by the a priori
probability of the true class in question).

An example ideal observer decision rule for particular values of the utilities
Ujij, and hence of the parameters 'iji, is shown in Fig. 1. Here we have chosen
7Y121 = 7Y212 = 3/14 and 7Y131 = 7Y313 = 7Y232 = 7Y323 = 1/7, yielding the decision
boundary lines

3LR1 - 1LR2 =O {"1-vs.-2"} (10)
14 14
1 1 14LR 1 - -_LR2 = vs
7 14 7

1 1
1 LR ± 1LR 2 = I- {2-vs.-"3"}. (12)

14 7 7

These simplify to the equations LR 2 = LR1 , LR 2 = 2LR1 - 2, and LR 2 =

LR 1/2 + 1, respectively.
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LR2

"712

1F3

LR1

Fig. 1. Example three-class ideal observer decision rule, given the values of the
decision parameters 7121 = 7212 = 3/14 and 7131 = •313 = 7232 = 7323 = 1/7. Note
that -fiji - (Uili - Ujli)P(t = •i).

3 The Scurfield Decision Rule

Scurfield investigated a decision rule applied to two-dimensional statistically
variable data (- = (Yi, Y2)) drawn from three classes (Scurfield, 1998). The
application domain was human observer performance modeling for acoustical
psychophysics experiments. (In prior work, Scurfield investigated a decision
rule for three-class classification of univariate data (Scurfield, 1996). We will
not review that prior work here, because at present we are interested in relating
given observer models to the three-class ideal observer model for multivariate
observational data, which yield two-dimensional decision variable data by (3).)
In Scurfield's work, no assumptions are made about the decision variables y1

and Y2; in particular, these decision variables are not assumed to be related
in any way to an ideal observer model. This is entirely appropriate given the
nature of the problem domain Scurfield investigated - i. e., human observer
performance modeling. It can readily be shown, however, that if one chooses
to make such assumptions, special cases of the Scurfield model are in fact

special cases of an ideal observer decision rule.

The Scurfield decision rule is dependent on two decision parameters, which we
will call 71 and y2. The decision rule can be written as

decide d = 7r, iffy1 - Y2 _Ž 71 - y2 and yl Ž 7 (13)
decide d = 7r2  iffy 1 - Y2 < y1 - 7 2  and Y2> 72; (14)

decide d= 7r3 iff Y1 < 71 and Y2 < 72. (15)

5



Y2

4'77

"71
Vl Yl

Fig. 2. Decision rule investigated by Scurfield, for the decision parameters 71 and
'72.

This decision rule is illustrated in Fig. 2.

From these relations, one can define the decision boundary lines

Y1 - Y2='1 - -2 {"l-vs.-2"} (16)

Y1 =71 {"1-vs.-3"} (17)

Y2 = 72 { "2-vs.-3" }. (18)

If we choose Yi - LR 1 (i) and Y2 - LR 2 (X) for some set of observational data
x, we have

LR1 - 1LR2  71- 72 {"1-vs.-2"} (19)
,7 70 '70

1-LR, -7_ {"l-vs.-3"} (20)
'70 70

1 LR2 72 "2-vs.-3"}, (21)

70 70

where -7o = 71 + '72 + 4. Note the similarity in form between these equations
and (7)-(9). If we require '7y and '72 to be positive, the correspondence is exact,
and this special case of (7)-(9) is illustrated in Fig. 3. (In fact, the intersection
of the ideal observer decision boundary lines can lie in any quadrant. However,
given a set of decision boundary lines with slopes as depicted in Fig. 2, the
occurrence of the intersection point in any quadrant other than the first would
result in an ideal observer operating point for which no observations were
assigned to class 7r3. This "degenerate" case will not be considered here.)

A second correspondence between Scurfield's decision rule and the ideal ob-
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LR 2

"7F2

72

Yi LR1

Fig. 3. A special case of the ideal observer decision rule with

7121 = 7'212 7 9131 = 7'232 = 1/(-Yi + -y2 + 4), 7313 = 9y1/('y1 + -y2 + 4), and

7323 = y12/(-1 + -y2 + 4). The parameters 9y1 and -y2 are positive but otherwise
arbitrary; this decision rule is a special case of the Scurfield decision rule with
Y1 = LR,(:t) and Y2 =- LR 2(X).

server decision rule can be obtained by taking Yi - log(LR1 (•)) and Y2

log(LR 2(f)), with -yi and -y2 now unrestricted. Substituting this definition in
(16)-(18), we obtain

log(LR1)- log(LR 2)='Yl--Y2 {"1-vs.-2"} (22)

log(LR1 ) ='71 {"l-vs.-3"} (23)
log(LR 2) = -Y2 {"2-vs.-3" }. (24)

Taking exponentials on each side of these equations then gives

LR 1 _

LR, -=eY1-2 {"1-vs.-2" } (25)LR2

LR= 01 {C"l-vs.-3" } (26)
LR 2 =e0 2  {"2-vs.-3"}; (27)

we can then rearrange terms and divide the equations by a constant factor to
obtain

- LR1 - -- LR 2  0 {"1-vs.-2"} (28)
'7o 9'0

e-;1
-- LR1  -- {"l-vs.-3"} (29)
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LR2

"cc7r2"

e72 Tl

7r3

e'Y1 LR1

Fig. 4. A special case of the ideal observer decision rule with 7121 = 7131 = e-•/'Yo,

7212 = 7232 = e-'Y/70, 7313 = 7323 = 1/yo, and to - 2(e-' + e-7 2 + 1). The
parameters -yj and -y2 are arbitrary; this decision rule is a special case of the Scurfield
decision rule with Yi - log(LR 1 (•)) and Y2 =- log(LR 2 (W)).

e-'2 1- LR 2 =-- {"2-vs.-3"}, (30)
7Yo 7Yo

where Yo =- 2(e-'Y + e- 2 + 1). By inspection, this is again a special case of
(7)-(9), which is illustrated in Fig. 4.

Finally, if we take Yi -= P(7r-') and Y2 - P(ir2 l•), and require 0 < -y < 1

and 0 < -y2 < 1, we obtain

P(W11:) - P(7 2 1) =y7 - 72{"1-vs.-2"} (31)
P(7rllg) = 7'1 1"l-vs.-3" } (32)

P(7r2Yi)-- -2 {"2-vs.-3"}, (33)

as illustrated in Fig. 5.

Note that (3) can be written as

LPR = P(7rijx)p(x)/P(7ri) {i: 1 < i < 2}
p@xi173)

P (7r~i ) = LRi[P(7ir)/P(7r3 )]
P(X) /P(X17r3)

P(rj)=LI• [P(7ri) / P (r3)] (34)
P(ir4F) = 1 + LR 1 [P(7r1)/P(7r 3)] + LR 2 [P(7r2)/P(7r 3)](

This allows us to rewrite (31)-(33) as
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P(7219)

7Y2

72

"7-"P(1)
")'1 P(iriII.)

Fig. 5. A special case of the Scurfield decision rule with Yi = P(7rl 19) and
Y2 P(7r2j!).

1 - (71 - 72) P(r1) LRj _ 1 + (9'1 - Y2) P(7r2) LR2 _ ^' -'2 (35)

IYO P (ý3 ) o0 P(7r3) 70

1 y j P ( 7r3) 71 y P ( 72) 1Y
1 -',P( - LR _ -' -Pl2 LRl2 = i-' (36)

7'0 P--Z) 7•190 P(7r3) 7'0

7'2P(7rl) L + -y2 P(7r2) 72
70 P(w 3) -YO P(73) ()

respectively, where 'yo =-(2-2y1+9•2)P(7 1 )/P(7r3 )+( 2 +-yi- 2 -y2)P(7r2)/P(7r3)+
-Y1 + -y2. This is again a special case of (7)-(9), as the quantities 1 - (-Yj - -Y2),
1+(-yi1- -y2), 1-y 1 , and 1--y2 are all positive given 0 < -'y < 1 and 0 < -Y2 < 1.

Scurfield points out (Scurfield, 1998) that the observer which maximizes Pc,
the "percent correct" or probability of a correct response, is a special case
of the ideal observer (i. e., a single operating point achievable by the ideal
observer for the given task). This observer follows the Scurfield decision rule
model with Yi -log(LRl(i)) and Y2  log(LR 2 (•)), and decision parameters
given by 01 = P(7r3)/P(7il) and e02 = P(ir 3)/P(ir 2). It is interesting to note
that the Scurfield decision rule model can in fact be used to describe ideal
observer performance for an even wider class of operating points, as shown in
this section.

To evaluate the performance of an observer using the decision rule in (16)-
(18), Scurfield plots a set of six surfaces in three-dimensional ROC spaces,
giving P(d = 7r21t = a(7r2 )) as a function of P(d = 7rllt = a(7rl)) and
P(d = 7r3 1t = a(7r3 )). Here a is one of the six possible permutations of three
symbols, which together form what is known as the symmetric group on three
letters (Clark, 1984). Scurfield gives a probabilistic interpretation for this eval-
uation methodology; the volume under each surface is the probability of a
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particular outcome in a three-alternative forced choice experiment, and thus
the six volumes must sum to one. One can, however, consider an alternative
formulation motivated strictly by economy rather than elegance of interpre-
tation. From this point of view, we claim that only four such surfaces are
necessary to completely characterize the observer's performance. Without loss
of generality, we consider plotting each of P(d = 7r2 It = 71), P(d = 72 It = 73),

P(d = 7r3It = 7r,), and P(d = 73rIt = 7r2) as functions of P(d = 7 1 It = r2) and
P(d = 7r1 lt = 7 3). (As with Scurfield's plots, these are well defined because
Scurfield's decision rule has two degrees of freedom, namely the parameters
71 and -y2.)

Now consider one of Scurfield's plots, for example that which gives P(d =

7r2It = 7r2) as a function of P(d = 7r1 t = 7r1) and P(d = ir3lt = 7r3 ). Because
these are conditional probabilities, we have

P(d = ,Illt = 7r)= - P(d = 7 21t = 71) - P(d = 7r3It = 7rl) (38)
P(d = 72It = 7 2)= 1 - P(d = lrt = 7r2) - P(d = r3It = 7r2) (39)
P(d = 73It = 7r3)= 1 - P(d = rlIt = 7r3) - P(d = 7r2 It = 7r3). (40)

Each of the conditional probabilities on the right hand side of these equations
can be written as functions of P(d = 7r It = 7 2) and P(d = 7r, It = 7 3 ) in our
formulation; thus the surface given in this plot is determined parametrically by
the set of four surfaces we have given. Similar remarks hold for the other five
surfaces used by Scurfield. In general, for an N-class classification task using a
Scurfield-type decision rule with N - 1 degrees of freedom (the generalization
to N classes of (16)-(18)), one can show that a set of (N - 1)2 hypersurfaces
with N - 1 degrees of freedom in N-dimensional ROC spaces is sufficient
to fully characterize the observer's performance, rather than the set of N!
hypersurfaces used by Scurfield.

4 The Chan Decision Rule

Chan et al. are investigating three-class classifiers for computer-aided diag-
nosis (Chan et al., 2003). Their work is motivated by reasoning similar in
principle to that which we independently arrived at when we began to con-
sider this problem. In particular, they consider a clinical situation in which
observations must be classified as malignant, benign, or normal. Because the
goal of their work is to optimize the performance of a system to aid a radiolo-
gist or clinician, rather than to measure the psychophysical performance of an
existing observer, they choose to start explicitly from an ideal observer model
in constructing their decision rule.
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In order to reduce the complexity of the ideal observer decision rule to man-
ageable proportions, Chan et al. impose restrictions on the utilities used by
their observer. In their formulation, the class we are labelling 7r, is the be-
nign class; 7r2 , the normal class; and the malignant class is 7r3 . They further
assume that the possible values of any utility Ujjj are restricted to the inter-
val [0, 1]. They then set U111 = U212 = U313 = 1 (i. e., correctly identifying
any case has maximal utility). Furthermore, they require U211 = U112 = 1
and U1 13 = U213 = 0 (i. e., misidentifying a benign case as normal, or vice
versa, has no significant cost reducing the utility of such a decision from the
maximum, but misclassifying an actually malignant case as benign or normal
has the minimum possible utility). Finally, Ua31 and U312 are assumed to have
arbitrary values on the open interval (0, 1) (i. e., misclassifying an actually
non-malignant case as malignant will have some cost reducing the utility of
such a decision from the maximum, but such a misclassification is in some
sense "better" than missing an actual malignancy). It is important to note
that these assumptions are arguably relevant to a reasonable model of a clin-
ical situation, and are thus of interest beyond their superficial advantage in
reducing the degrees of freedom involved in the observer's decision rule. We
will, however, only consider the latter issue in the remainder of this section.

Substituting the values of the utilities given above into (4), we obtain decision
boundary lines of the form

OLR1 + 0LR2 =0 {"1-vs.-2"} (41)
(1 - U31 )P(Irl) LR1 + (1 - U312)P( r2) LR 2 = P(7r3) {"l-vs.-3"} (42)

'Yo % '7
(1__-_U3________ (1( -a1)P(P7r("LR + LR 2 - =P( 3) {"2-vs.-3"} (43)

VYo %y "Y0

where -yo 1 + P(ir 3)- U311P(r,) - U3 12P(ir2 ). Note that, as Chan et al. point
out, the "1-vs.-2" line is in fact undefined for this choice of utilities, while the
"1-vs.-3" and "2-vs.-3" lines are identical. This is a general consequence of
(7)-(9); if any two of these equations yield identical lines, the third line must
be either identical to them or undefined. (Note that, strictly speaking, the
utility structure employed by Chan et al. is excluded from our formulation by
the requirement stated in (6). However, this issue - i. e., whether the ideal
observer's performance should be considered to include such limiting cases -
is largely a definitional, rather than a fundamental, issue.)

The decision rule considered by Chan et al. is illustrated in Fig. 6. It can be
argued that, in a sense, the output of this classifier belongs to only two classes,
malignant and non-malignant; in particular, because (41) is undefined, this
observer will never unequivocally decide d = 7r, (benign) or d = 7r2 (normal).
In fact, if U311 = U312, the observer's performance is identical with that of a
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LR 2

'Y2

71 LR1

Fig. 6. The decision rule investigated by Chan et al., which is a spe-
cial case of the ideal observer decision rule with 7121 = 7212 = 0,
7131 = (1 - U31i)P(7rr)/1Y0, 7232 = (1 - U312 )P(7r2 )/-Yo, and 7313 = -7323 = P( 3)/-0;
here -70 = 1 + P(7r3) - U311P(7rl) - U312P(Tr2). Observations in the unlabelled re-
gion are decided "not 73", i. e., either "7n" or "7r2" . The intercepts -71 and -Y2 are
P(Tr3)/[(1 - U3,l)P(7r,)] and P(7r3 )/[(1 - U3 12 )P(7r2 )], respectively.

two-class ideal observer which distinguishes between the malignant and non-
malignant (benign plus normal) classes. However, in the more general case in
which U311 # U3 12 , the observer considered by Chan et al. is able to achieve
ROC operating points not accessible by the two-class ideal observer. (That
is, the three-class ideal observer can achieve points below the two-class ideal
observer's ROC curve in a two-class ROC space, or, equivalently, points off
the curve representing the two-class ideal observer's performance plotted in a
three-class ROC space.) Intuitively, their observer makes decisions based on
the three distribution functions of the observational data, even though the
observer's output consists of only two possible responses.

Chan et al. evaluate the performance of their observer by plotting P(d =

7r3It = 7r3) as a function of P(d= 731t = 7ri) and P(d = 7r3t = 7r2). Note
that, unlike the case for the Scurfield decision rule (and for the Mossman
decision rule, as shown in the next section), this single two-dimensional surface
is sufficient to completely characterize the performance of their observer. This
is because, as just stated, the observer's output consists of only two possible
responses, and thus we have only six classification probabilities P(d = 7ti t =

7rj) rather than the nine expected in a three-class classification task. These six
conditional probabilities are still constrained by three equations, however:

P(d = Fi3 It = 7n1) + P(d = 7aIt = 71n)= 1 (44)

P(d = F 3 It = 7n2 ) + P(d = Ia3t = 7r2 )= 1 (45)
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P(d = i3aIt = 7r3) + P(d 7r3 1t 7r3) 1, (46)

where the expression d = IR3 indicates that the observer decides that the
observation does not belong to class -r3 . These constraint equations allow us
to eliminate three of the six conditional probabilities, leaving a single ROC
surface with two degrees of freedom in a three-dimensional ROC space.

5 The Mossman Decision Rule

Mossman investigates a decision rule applied to a set of three decision variables

Y1, Y2, and Y3, subject to the constraint

Y1 +Y2+Y3 = 1, (47)

as well as 0 < yi < 1 {1 < i < 3}. This is consistent with the constraint
on the a posteriori class probabilities, P(7rl) + P(7r21') + P(731i) = 1;
these quantities are known to be directly related to the likelihood ratio ideal
observer decision variables (Kupinski, Edwards, Giger, and Metz, 2001; Ed-
wards, Lan, Metz, Giger, and Nishikawa, 2004a). Mossman does not explicitly
require, however, that the decision variables in (47) be the a posteriori class
probabilities (e. g., they may be noisy estimates of these quantities).

The decision rule considered by Mossman, which depends on two decision
parameters 7y and -72, is

decide d=71  iffy 2 -y1_<7 2 and Y3<-y1; (48)
decide d =r 2  iffy 2 - y, > 72 and Y3 _71; (49)

decide d= r 3  iff Y3 > 71. (50)

where 0 < 'yi < 1 and -1 < 72 < 1. From these relations, and given the
relation Y3 = 1 - Y1 - Y2 from (47), one can define the decision boundary lines

YI- Y2= 2 {"1-vs.-2"} (51)

Yl+Y2=1-71 {"1-vs.-3"} (52)
YI + Y2 = 1 - 71 {"2-vs.-3"}. (53)

This decision rule is illustrated in Fig. 7. Note that, similar to the Chan et al.
decision rule, the "1-vs.-3" and "2-vs.-3" decision boundary lines are identical.

We now consider a special case of the Mossman decision rule in which y, =
P(7r14), Y2 = P(7r2 lxi), and Y3 = P(7r31x) for some observational data vector
x. Note that (3) can be written as
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Y2

1 -'W1iy

Yi

Fig. 7. Decision rule investigated by Mossman, for the decision parameters -Yi and
Y2, shown in the a posteriori class probability space.

LR, = P(7rirj)P(()/P(7i) {i: 1 < i < 2}
p(Y) 173)

P(rili) = LRP(7ri)/P(7r3)

LRPiP(7ri)/P(7r3) (54)
= 1 + LRi[P(7rl)/P(7r 3)] + LR 2 [P(7r2)/P(ir3)](

This allows us to rewrite (51)-(53) as

(1 P(7r) -R1 - (1 - +2) p--P (r 2)LR_ - 72 "1-vs.-2"} (55)
1-l-"2)p-•.i) LR -(1- 2 - "2 )(5

P(Ir3) P(72)

P(7ri) LR, + 7 1 P(W2)LR - 1 - y { "1-vs.-3"} (56)
P(Frr) P(7r2) -1

711P(7r') LRl + 71 P(7rr)L2 - 1 - _Y1 {"2-vs.-3"}, (57)

This version of the decision rule is illustrated in Fig. 8.

Although the Mossman decision rule appears similar in form to the ideal ob-
server decision rule, recall from Sec. 4 that if two of the decision boundary line
equations are identical, the third must yield a line identical to the first two or
be undefined. Another way to see this is to note that the coefficients of (9) are
differences of the corresponding coefficients of (7) and (8). If the coefficients
of (8) and (9) are identical, it must be the case that the coefficients of (7)
are all zero. For the Mossman decision rule, this would require 1 + -y2 = 0,
1 - 72 = 0, and -72 = 0 simultaneously, which is clearly impossible. It follows
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71-y P(I2 7U

_Y2_• " ,,r3
1-712P(7W3

1-7 1 P(73) LRI

Fig. 8. Decision rule investigated by Mossman, for the decision parameters 71 and
%2, shown in likelihood ratio space.

that the decision rule considered by Mossman cannot represent possible ideal
observer performance for any choice of the utilities Uilj in (1) and (2).

Mossman proposed that the ROC surface obtained by plotting P(d= r3 t It

7r3) as a function of P(d = 7rilt = 7ri) and P(d = 7r2 It = 7r2) be used to
evaluate the performance of the observer. Although this surface is clearly well-
defined (the Mossman decision rule has two degrees of freedom, namely the
parameters 71 and 72), it follows from the discussion at the end of Sec. 3 that
four such surfaces in three-dimensional ROC spaces are needed to completely
characterize the observer's performance.

6 Discussion and Conclusions

We examined three decision rules proposed recently for three-class classifi-
cation tasks by different researchers. The basis for our evaluation was ideal
observer decision theory, primarily because our own interest in the three-class
classification task is its possible application to CAD. A major goal in the
development of a computerized scheme for CAD is the optimization of the
performance of that scheme, in order to provide the maximum benefit to clin-
icians and thus to their patients. It should thus be kept clearly in mind that
the ideal observer framework may not be as relevant, for example, to work
which is motivated by purely psychophysical considerations (Scurfield, 1996,
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1998; Mossman, 1999) - i. e., where the goal is to estimate of the properties
of an existing observer.

That being said, the three-class classification task is difficult enough that it is
perhaps worth making any attempt to analyze, from a single point of view, the
work of the relatively few researchers investigating this problem, even in cases
where that point of view is not necessarily relevant to the underlying motiva-
tions for that work. We feel the insights we have gained from the analysis of
various decision rules presented here should provide at least some justification
for that claim.

In particular, Scurfield points out (Scurfield, 1998) that his proposed decision
rule is in fact an ideal observer decision rule for a single ideal observer operat-
ing point, namely the observer which maximizes the probability of any correct
response (or "percent correct" or Pc). We were able to show that, under var-
ious assumptions, a larger set of such correspondences between the Scurfield
observer and the ideal observer exists.

Chan et al. are working on the application of three-class classification to CAD,
and thus explicitly take the ideal observer as the starting point in the devel-
opment of their decision rule (Chan et al., 2003). Although this rendered our
analysis of that decision rule in terms of ideal observer decision theory largely
trivial, their decision rule merits attention as an example of a situation in
which the ideal observer is indeed making use of information from the three
classes of observations (i. e., its behavior is demonstrably different from that
of a two-class ideal observer), while only producing two different responses for
those observations. In two-class classification, the only corresponding exam-
ples are trivial: either the observer always calls observations positive (achieving
an operating point of (FPF = 1, TPF = 1), where FPF is the false-positive
fraction and TPF the true-positive fraction) or always calls them negative
(FPF = 0, TPF = 0).

Finally, we showed that a decision rule proposed by Mossman (Mossman, 1999)
does not correspond to ideal observer behavior for any possible values of the
utilities used by the ideal observer. However, we note that the structure of the
Mossman decision rule - a simple sequence of thresholds on single decision
variables - may indeed serve as a reasonable model for human observer per-
formance in certain situations, e. g., differential diagnosis. That such a decision
rule fails to be an ideal observer decision rule may be considered surprising,
given the properties the Mossman decision rule shares with that of Chan et al.
- in particular, the identity of two out of the three decision boundary lines.
The reasons why one decision rule can be said to always correspond to ideal
observer behavior, while a rule similar in structure never can, are connected to
fundamental constraints on the ideal observer's behavior; given the inherent
complexities of the three-class classification task, it is easy for such properties
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to become "lost in the noise" so to speak. A close comparison of two possi-
ble three-class classification decision rules can thus provide an immediate and
intuitive understanding of such properties, even though a complete and fully
general solution to the three-class classification problem remains elusive.
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APPENDIX E

Restrictions on the Three-Class Ideal

Observer's Decision Boundary Lines

Darrin C. Edwards* and Charles E. Metz

Abstract

We are attempting to develop expressions for the coordinates of points on the three-class ideal

observer's receiver operating characteristic (ROC) hypersurface as functions of the set of decision criteria

used by the ideal observer. This is considerably more difficult than in the two-class classification task,

because the conditional probabilities in question are not simply related to the cumulative distribution

functions of the decision variables, and because the slopes and intercepts of the decision boundary

lines are not independent; given the locations of two of the lines, the location of the third will be

constrained depending on the other two. In the present work we attempt to characterize those constraining

relationships among the three-class ideal observer's decision boundary lines. As a result, we show that

the relationship between the decision criteria and the misclassification probabilities is not one-to-one,

as it is for the two-class ideal observer.
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Restrictions on the Three-Class Ideal

Observer's Decision Boundary Lines

I. INTRODUCTION

Receiver operating characteristic (ROC) analysis is the accepted methodology for analyzing

the performance of a two-class classifier [1], in particular for medical decision-making tasks

in which a patient is diagnosed as having a particular condition or not based on features of a

medical image [2]. In judging the performance of an observer measured via ROC analysis, the

standard for comparison is the so-called ideal observer, that observer which outperforms any other

possible observer given the statistical variability of the observational data being classified [1],

[3]. Although the general form of the ideal observer in a classification task with three or more

classes has been known for some time [3], the considerable complexities inherent to this model

compared to the two-class classification task have hampered the development of extensions of

ROC analysis which are both fully general and practically useful. (Several researchers have

recently proposed restricted observer models or restricted evaluation methods [4]-[7].)

Despite these difficulties, research continues in this area because the advantages to be gained

from a three-class classifier and appropriate evaluation methodology are considerable. In our own

case, we seek to combine existing computer-aided diagnosis (CAD) schemes for detecting [8]-

[12] mammographic mass lesions and classifying them as malignant or benign [13]-[17]. The

combined scheme would serve as a fully automated classifier (the existing classifier requires

initial manual identification of lesions by a radiologist), potentially allowing radiologists to reduce

their false-positive biopsy rate without reducing their sensitivity for detection of malignancies.

Our initial efforts toward this goal so far have been more theoretical than practical. We have

shown that, just as the two-class ideal observer achieves the optimal two-class ROC curve for

a given task, the N-class ideal observer achieves the optimal N-class ROC hypersurface [18].

(Note that the ideal observer is formally defined as that which minimizes the expected Bayes

risk [3], and not in terms of classification performance, making this a non-trivial observation

in both cases.) More soberingly, we found recently that an obvious generalization of the well

known performance metric, the area under the ROC curve (AUC), is not a useful performance
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metric in a classification task with three or more classes [19].

At present we are attempting to develop expressions for the coordinates of points on the

three-class ideal observer's ROC hypersurface (the conditional probabilities for misclassifying

observations [ 18], [20], [21 ]) as functions of the set of decision criteria used by the ideal observer.

This is considerably more difficult than in the two-class classification task for two reasons. First,

the conditional probabilities in question are not simply related to the cumulative distribution

functions (cdfs) of the decision variables, but are integrals of those variables over domains

determined by three decision boundary lines [3]. Second, the slopes and intercepts of the decision

boundary lines are not independent; given the locations of two of the lines, we have found recently

that the location of the third will be constrained depending on the other two.

In the present work we attempt to characterize the constraining relationships just mentioned

among the three-class ideal observer's decision boundary lines. Although this work is admittedly

still removed from image analysis per se, we hope it may prove of interest to the CAD community

and ultimately of relevance to a wide variety of medical image analysis tasks. In the next section

we briefly review the structure of the three-class ideal observer and the notation we have been

using to characterize it [ 18]. In Sec. III, we briefly illustrate that the intersection of the three-class

ideal observer's decision boundary lines may lie in any of the four quadrants of the decision

variable plane. In Sec. IV, we show that for a given location (slope and y-intercept) of the

decision boundary line separating the first and third classes, the location of one of the remaining

two lines is constrained in a particular way based on the location of the other.

Given the arbitrariness of the labels applied to the three classes (i. e., which classes are

considered first, second, or third), one would expect the selection of the fixed line in Sec. IV

to be similarly arbitrary, and indeed in Secs. V and VI we show that corresponding results are

obtained if one takes the location of the decision boundary line separating the second and third,

or first and second, classes, respectively, to be given. These results are summarized, and the

principal conclusions of the work are given, in Sec. VII.

II. THE THREE-CLASS IDEAL OBSERVER

In [18], we showed that an N-class ideal observer makes decisions by partitioning a likelihood

ratio decision variable space, where the boundaries of the partitions are given by hyperplanes:

N-1

decide d = 7ri ff E (UAlk - Ujlk)P(t = 7rk)LRk
k=1

2



> (UjIN - UiIN)P(t = 7N) {j <i} (1)

N-1

and E (UVik - Ujlk)P(t = 7rk)LRk
k=1

> (UjiN - UiIN)P(t = 7Nr) {j > i}. (2)

(Here UjIj is the utility of deciding an observation is from class iri given that it is actually from

class 7-j.) The partitioning is determined by the parameters

-7ijk (Uilk - Ujlk)P(t = 70k), (3)

with i, j, and k varying from 1 to N, and j 7 i. Note that these parameters are not independent,

however, because

"7ijk = '7kjk - 'Ykik. (4)

We can impose the reasonable condition that the utility for correctly classifying an observation

from a given class should be greater than any utility for incorrectly classifying an observation

from the same class, i. e., Uqi > Ujlj {i i4 j}. This gives, for j 74 i,

"7ij > 0, (5)

leaving N(N - 1) parameters (the rest are derivable from (4)).

Finally, note that the hyperplanes represented by (1) and (2) are unchanged if we multiply all

of these equations by a single scalar, such as 1/(ZMoj -Yiji). This leaves us with N2 - N - 1

degrees of freedom, as expected.

The behavior of a three-class ideal observer is completely determined by the three decision

boundary lines

-72,LR1 - 212LR2 = 7313 - 7323 (6)
'Y13 1LR1 + (7232 - 'Y21.)LR2 = 7313 (7)

('7131 - _Y121)LRj + '7232LR 2 = 7323, (8)

which we call, respectively, the "1-vs.-2" line, the "1-vs.-3" line, and the "2-vs.-3" line. Note

that if any two of these lines intersect, the third line must also share this intersection point. We

also emphasize the simple interpretation, from (3), of each of the 'yiji parameters appearing in

these decision boundary line equations as the difference in utilities between a "correct" and one

particular "incorrect" decision (scaled by the a priori probability of the true class in question);

and of each difference in the -y'ji parameters as a difference in utilities between two possible

"incorrect" decisions (again scaled by the a priori probability of the true class in question).

3
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LR2

III TH INTERSECTION POINT_

1F"1

LRt1

Fig. 1. Example ideal observer decision rule in which the intersection point of the decision boundaries lies in the second

quadrant. Here the "l-vs.-2" line has unit slope, the "l-vs.-3" line has slope -1, and the "2-vs.-3" line is horizontal.

III. THE INTERSECTION POINT

The intersection point of the three decision boundary lines mentioned at the end of the

preceding section is often shown as occurring in the first quadrant (LR 1 >_ 0, LR 2 >__ 0). This

is not, however, a requirement, and we can demonstrate with special cases that this intersection

point can in fact occur in any quadrant. That is, we seek values of the -yiji coefficients in (6)-(8),

consistent with the conditions in (5), for which the intersection of the three lines occurs in the

appropriate quadrant.

Consider a case in which 7Y121 = 1/10, 7'212 = 1/10, '7131 = 1/10, 313 = 1/10, -'232 = 2/10,

and -Y323 = 4/10. This yields the decision boundaries

ILR, - 1LR 2  = -1 {"1-vs.-2"} (9)
10 10 10
1 11-LR 1 + -LR 2  = 1- - "-vs.-3" (10)
10 10 10

2LR2 = 4 {"2-vs.-3"} (11)
10 10

which intersect at the point (LR 1  -1, LR 2 = 2), as illustrated in Fig. 1.

An example of the intersection point occurring in the third quadrant may be obtained by taking

'121 = 3/10, -7212 = 3/10, 7131 = 1/10, 7313 = 1/10, 'Y232 = 1/10, and -7323 = 1/10. This yields

4



I /

"L"R2LR

72

Fig. 2. Example ideal observer decision rule in which the intersection point of the decision boundaries lies in the third quadrant.
Here the "1-vs.-2" line has unit slope, the "l-vs.-3" line has a slope of 1/2, and the "2-vs.-3" line has a slope of 2.

the decision boundaries

3LR 1 -3LR 2  = 0 {"1-vs.-2"} (12)

-L1-R {"l-vs.-3"} (13)

•oLRI-2R2 - i

Finally, an example of the intersection point occurring in the fourth quadrant may be obtainedby taking '7121 = 1/10, h 7212 u 1/10, 7131 t 2/10, '7313 h4/10, '232 = 1/10, and t7323 
- 1/10.

This yields the decision boundaries

10 103

3LR1 - -LR 2  = f {"l-vs.-2"} (15)

1014 {"l-vs.-3"} (16)

LR0 10 10

-LRI + -LR 2 = - {"2-vs.-3"} (17)10 10 10

which intersect at the point (LR 1 = 2, LR 2 = -1), as illustrated in Fig. 3.
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2" -

773 "7r2"

I //'

" - LR,

Fig. 3. Example ideal observer decision rule in which the intersection point of the decision boundaries lies in the fourth

quadrant. Here the "1-vs.-2" line has unit slope, the "l-vs.-3' line is vertical, and the "2-vs.-3" line has a slope of -1.

IV. RESTRICTIONS DETERMINED BY THE "l-vs.-Y' LINE

From the conditions on the 7-i parameters, we can readily derive conditions on the decision

boundaries themselves. If we denote the slope of the "i-vs.-j" line by mij, its y-intercept by bj,

and its zr-intercept by Xij, we have

m12 = > 0 (18)

"7212

X13 - '7313 > 0 (19)
'7131

b23- = '323 > 0. (20)
'Y232

These are the three conditions stated in [22].

Further constraints on the decision boundaries can be obtained by considering the two cases

'Y232 - '7212 > 0 and '7232 - 7'212 < 0. In the first case (i. e., '7232 > '7212, or U112 > U312), we have

m13 = -'131 <0 (21)
'7232 - '7212

b13 = '313 > 0. (22)
'7232 - 7'212

6



"We also have

2 3  
-- (7131 - 7121)

"7232

(7232 - "y212 )m 13 + 7'2 12M12
'Y232

= '17212/ 721m2.

M13 + 22 M 1 . (23)
'7232/ '7232

This is a weighted sum of the slopes M 12 and M 13 , where the weights are positive and sum to

one. Since we must have M 1 3 < M 12 from (18) and (21), it must therefore be the case that

M 13 • M 23 •5 M 12 . (24)

Furthermore,

b 7323
"7232

"Y313 - ('7313 - '7323)

'7232

(7232 - "'212)bl3 + -7 212b12

7232

=71 - 22 b13 + 7232 (25)
723 ) 723212

This is a weighted sum of the y-intercepts b12 and b13, where the weights are positive and sum

to one; thus, in addition to (24), we have the condition

min(b12 , b13) _< b23 •_ max(b12, b13). (26)

If b12 < 0, then (26) immediately reduces to b12 •< b23 •5 b13 (by (22), we are considering a

special case in which b13 > 0). This is illustrated in Fig. 4 for the slightly different situations

X12 < X13 and X12 Ž_ X13. If, on the other hand, b12 _> 0, then (24) and (26) together imply

two possible situations, depending on whether b12 < b13 or b12 >_ b13. These possibilities are

illustrated in Fig. 5.

We now consider the case 7Y232 - 7212 < 0 (i. e., 7'232 < 7212, or U112 < U312), which yields

M13 - > 0 (27)
"7232 - 7212

b13 7313 < 0. (28)
"7232 - 7212

7



LR2  
LR 2

72

7r1

irl-1r3

LR1
LR,

(a) (b)

Fig. 4. Example ideal observer decision rules for the case -Y232 - 'Y212 > 0 and b12 < 0. In (a), the "2-vs.-3" line can lie

anywhere between the two dashed lines shown (the region between the lower dashed and dotted lines is excluded because

b23 > 0); observations in the unlabeled region above this line will be decided "ir2", and those below this line will be decided

"7r3". In (b), the "2-vs.-3" line can lie anywhere in the unlabeled region (provided it shares the intersection point of the "l-vs.-2"

and "l-vs.-3" lines shown); observations above this line will be decided "Wr2", and those below this line will be decided W13.

LLR2
LR2 72

7t2

', 719-2

6." .7-3 Tý::7r3

LR 1  LR 1

(a) (b)

Fig. 5. Example ideal observer decision rules for the case ^1232 - "Y212 > 0 and b12 >_ 0. In (a), the "2-vs.-3" line can lie

anywhere in the unlabeled region; observations above this line will be decided "7r2", and those below this line will be decided
"7r3". In (b), the "2-vs.-3" line can lie anywhere between the "1-vs.-2" and "l-vs.-3" lines (provided it shares their intersection

point); note that observations in this region will be decided "7r," regardless of the position of this line.

8



We now have

7121
M 1 2 - "7212

7131 - (7131 -7121)

7212

-(-232 -- 7 2 12 )m 13 + 7 23 2m 23

'Y212

=23 n 13 + -in M2 . (29)
\Y 212)/ '212

This is again a weighted sum in which the weights are positive and sum to one, giving

min(m 13 , m 2 3 ) M m12 < max(im13, m 23 ). (30)

Furthermore,

b12  7 '313 732

-'7313 + 7323

17212

-(-7232 - '72 12)b 13 + 2Y 2 32b23

7212

1-_(7232 - 2)b13 + 'Y232b2(7 212) 71= (1 "2i 73-- b13 + 732'7212 2.(31)

This is a weighted sum of the y-intercepts b13 and b23, where the weights are positive and sum

to one; thus, in addition to (30), we have the condition

b13 •5 b12 _• b23 , (32)

since b13 < b23 by (20) and (28).

If Mn2 3 < 0, then (30) immediately reduces to Mn23 _ Mn1 2 _ Mn1 3 (by (27), we are considering

a special case in which Mn1 3 > 0). This is illustrated in Fig. 6 for the slightly different situations

X13 < X23 and X13 _> X23. If, on the other hand, Mn2 3 _> 0, then (30) and (32) together imply

two possible situations, depending on whether in 2 3 < n 1 3 or in 2 3 > Mn1 3 . These possibilities are

illustrated in Fig. 7.

One may of course ask what happens when '7232 - '7212 = 0 (i. e., '7232 = 7212, or U112 = U3 12 ).

9



LR 2

LR2
72

LR2 2

7 l "7r2

LR1  LR 1

(a) (b)

Fig. 6. Example ideal observer decision rules for the case -Y232 -Y "212 < 0 and m23 < 0. In (a), the "l-vs.-2" line can

lie anywhere between the two dashed lines shown (the region between the lower dashed and dotted lines is excluded because

m12 > 0); observations in the unlabeled region above this line will be decided "72", and those below this line will be decided
"1i7r". In (b), the "1-vs.-2" line can lie anywhere in the unlabeled region (provided it shares the intersection point of the "l-vs.-3"

and "2-vs.-3" lines shown); observations above this line will be decided "r2", and those below this line will be decided "7r".

LR 2  LR 2
t9t

i72 72

tI

i73  
it 1

LR1  LR 1

(a) (b)

Fig. 7. Example ideal observer decision rules for the case 'Y232 - Y212 < 0 and m23 _! 0. In (a), the "1-vs.-2" line can lie

anywhere in the unlabeled region; observations above this line will be decided "'r2", and those below this line will be decided

"7r". In (b), the "1-vs.-2" line can lie anywhere between the "I-vs.-3" and "2-vs.-3" lines (provided it shares their intersection

point); note that observations in this region will be decided "7r3" regardless of the position of this line.
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"In this case, both M1 3 and b13 are infinite. Furthermore,

--(7131 - 7121)

m7232

-'7131 '7121

'7232 '7212
-i'131

-- + M12
'7232

< M 12 , (33)

and

9 'Y323 - 7313

7212

7'323 -7313

'7232 7212

= b23  -_'Y313
7'212

< b23. (34)

Together, (33) and (34) can be considered either a special case of the inequalities (24) and (26),

if we take M 13 = -00 and b13 = +--; or of the inequalities (30) and (32), if we take m 13 = +oo

and b13 = -00. This situation, for the slightly different cases b12 < 0 and b12 _> 0, is illustrated

in Fig. 8.

V. RESTRICTIONS DETERMINED BY THE "2-VS.-3" LINE

In the preceding section, the possible values of the quantity '7232 - 7212 were considered in

order to determine properties of the ideal observer decision boundary lines. It may be argued that

the choice of a parameter from the "I-vs.-3" line, i. e., one of the three available lines, must be an

arbitrary one. In fact, we may consider taking another parameter (or combination of parameters)

from (6)-(8), and using it to determine conditions on the properties of the decision boundary

lines as above. Given that all possible values of the quantity '7232 - '7212 were considered, it is

expected that no new conditions should be determinable (let alone conditions inconsistent with

those already determined).

Consider the quantity 7'131 -'121 from (8). In particular, when 7'131 -'121 > 0 (i. e., 7'131 > 7'121,

or U211 > U311), we have

1 = 7232 < 0 (35)
M 23  7'131 - 7'121

X23 = 7'323 > 0. (36)
7'131 - 7'121

11
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LR2• 7

"722

S... •--77"
S.....LR I L*

LR,

(a) (b)

Fig. 8. Example ideal observer decision rules for the case -Y232 - 7212 = 0. In (a), the "2-vs.-3" line can lie anywhere between

the two dashed lines shown (the region between the lower dashed and dotted lines is excluded because b23 > 0); observations in

the unlabeled region above this line will be decided "7r2", and those below this line will be decided "r3". In (b), the "2-vs.-3"

line can lie anywhere in the unlabeled region; observations above this line will be decided "7r2", and those below this line will

be decided "r3".

Through reasoning similar to that of the preceding section, we also have

<_ < (37)
M 23  M 13  M 12

and

min(X12 , X23) •- X13 • max((X12 , X23). (38)

If X12 < 0, then (38) immediately reduces to X12 <2 X13 <2 X23 (by (36), we are considering a

special case in which X23 > 0). This is illustrated in Fig. 9 for the slightly different situations

b1 2 < b23 and b12 > b23. If, on the other hand, X12 > 0, then (37) and (38) together imply

two possible situations, depending on whether X12 < X23 or X12 ý> X23. These possibilities are

illustrated in Fig. 10.

If 7131 - 7121 < 0 (i. e., 'Y131 < 7121, or U211 < U311), we have

1 - Y232 > 0 (39)
M 2 3  "^131 - 7121

X2( - 323 <0. (40)
"7131 - Y121
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LR 2

LR 2

' 72 72

7rj
7rr 7rj

LR, LR1

(a) (b)

Fig. 9. Example ideal observer decision rules for the case 7'131 - "7121 > 0 and X12 < 0. In (a), the "1-vs.-3" line can

lie anywhere between the two dashed lines shown (the region between the left dashed and dotted lines is excluded because

X13 > 0); observations in the unlabeled region to the right of this line will be decided "7r", and those to the left of this line

will be decided "7r3". In (b), the "1-vs.-3" line can lie anywhere in the unlabeled region (provided it shares the intersection

point of the "1-vs.-2" and "2-vs.-3" lines shown); observations to the right of this line will be decided "7r,", and those to the

left of this line will be decided "7r3".

LR 2

LR2
"7-2"

'' ,71.

"7127r3

7r3

LR1  LRi

(a) (b)

Fig. 10. Example ideal observer decision rules for the case 'Y131 - 'Y121 > 0 and X12 >_ 0. In (a), the "1-vs.-3" line can lie

anywhere in the unlabeled region; observations to the left of this line will be decided "7i", and those to the right of this line

will be decided "7r3". In (b), the "1-vs.-3" line can lie anywhere between the "1-vs.-2" and "2-vs.-3" lines (provided it shares

their intersection point); note that observations in this region will be decided "7r2" regardless of the position of this line.
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LR 2  " ,

71r "

7r3

LRI LRI

(a) (b)

Fig. 11. Example ideal observer decision rules for the case y'131 - 'Y121 < 0 and 1/m13 < 0. In (a), the "1-vs.-2" line can

lie anywhere between the two dashed lines shown (the region between the vertical dashed and dotted lines is excluded because

m12 > 0, and therefore 1/m12 > 0); observations in the unlabeled region above this line will be decided "7r2", and those

below this line will be decided "7r,". In (b), the "I-vs.-2" line can lie anywhere in the unlabeled region (provided it shares

the intersection point of the "l-vs.-3" and "2-vs.-3" lines shown); observations above this line will be decided "7r2", and those

below this line will be decided "'rj".

One can also show

mini _ <_ 1 <max (41)
U 1 3 M 23  M 12  M1 3 M 23

and

X23 •2 X12 < X13. (42)

If 1/m13 < 0, then (41) immediately reduces to 1/mn13 •5 1/rn 12 •_ 1/M 23 (by (39), we

are considering a special case in which 1/M 23 > 0). This is illustrated in Fig. 11 for the

slightly different situations b23 < b13 and b23 _> b13. If, on the other hand, 1/m13 >_ 0, then

(41) and (42) together imply two possible situations, depending on whether 1/M1 3 < 1/M 23 or

1/m13 Ž_ 1/M 23 . These possibilities are illustrated in Fig. 12.

Finally, we consider the case 7131 - 'Y121 = 0 (7131 = 7121, or U211 = U311), in which both

1/M 23 and X23 are infinite. We now have
1 1I- < 1 (43)

M 1 3  M 1 2
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iIT

7273

LR1  LR 1

(a) (b)

Fig. 12. Example ideal observer decision rules for the case '131 - ^121 < 0 and 1/m13 _> 0. In (a), the "1-vs.-2" line can lie

anywhere in the unlabeled region; observations above this line will be decided "7r2", and those below this line will be decided
"1r,". In (b), the "l-vs.-2" line can lie anywhere between the "l-vs.-3" and "2-vs.-3" lines (provided it shares their intersection

point); note that observations in this region will be decided "7r3" regardless of the position of this line.

and

X12 < X13. (44)

Together, (43) and (44) can be considered either a special case of the inequalities (37) and

(38), if we take 1/M 23 = -oc and X23 = +oo; or of the inequalities (41) and (42), if we

take 1/M23 = +00 and X23 = -oo. This situation, for the slightly different cases X12 < 0 and

X12 > 0, is illustrated in Fig. 13.

Notice that every figure in this section has one or more corresponding figures in the preceding

section (depending on the possible values of the undetermined decision boundary parameter

being illustrated in that figure). Specifically,
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64 / 77r
Y 2" 

46 7r"32

LR 1  LR,

(a) (b)

Fig. 13. Example ideal observer decision rules for the case 'Y131 -'Y121 - 0. In (a), the "l-vs.-3" line can lie anywhere between

the two dashed lines shown (the region between the leftmost dashed and dotted lines is excluded because X13 > 0); observations

in the unlabeled region to the right of this line will be decided "7r,", and those to the left of this line will be decided "7r3". In

(b), the "1-vs.-3" line can lie anywhere in the unlabeled region; observations to the right of this line will be decided "7r,", and

those to the left of this line will be decided "7r3".

Fig. 9(a) == Figs. 5(a), 6(a), 8(b)

Fig. 9(b) => Fig. 5(b)

Fig. 10(a) = Figs. 4(a), 6(a), 8(a)

Fig. 10(b) =• Figs. 4(b), 6(b), 8(a)

Fig. 11(a) =• Figs. 4(a), 5(a)

Fig. 11(b) => Fig. 5(b)

Fig. 12(a) => Figs. 7(a), 8(a), 8(b)

Fig. 12(b) => Fig. 7(b)

Fig. 13(a) =• Figs. 5(a), 7(a), 8(b), 5(b)

Fig. 13(b) =• Figs. 4(a), 7(a), 8(a)

That is, none of the conditions derived in this section are inconsistent with those derived in

the preceding section. Also note the symmetry between the corresponding equations and figures

in Secs. IV and V, if one "swaps" the labels of classes 7r1 and 7r2, and additionally replaces mij

with 1/mij and Xij with bij. (Intuitively, if one "flips" the figures in one section about the y = x
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line, one obtains the figures in the other section.)

VI. RESTRICTIONS DETERMINED BY THE "l-vs.-2" LINE

In this section, we consider the possible values of the quantity '7313 -'7323. As in the preceding

section, we expect to obtain no conditions inconsistent with those already derived.

When 7'313 - 7323 > 0 (i. e., 7313 > 7323, or U2 13 > U113), we have

1 - 7212 < 0 (45)
b12 7313 - '7323
1 _ 7121 >0- 1 > 0. (46)

X12 7313 -Y 7323

(47)

Through reasoning similar to that of the preceding sections, we also have

1 < 1 < 1 (48)
b12 - b13  b23

and
min 1 1 _< - _<max , .(49)

(X3 X12) X13 (X3 X12

If 1/X23 < 0, then (49) immediately reduces to I/X23 <_ 1/X13 < I/X12 (by (46), we are

considering a special case in which I/X12 > 0). This is illustrated in Fig. 14 for the slightly

different situations M23 < M 12 and M23 _> M 12 . If, on the other hand, I/X23 > 0, then (48)

and (49) together imply two possible situations, depending on whether I/X23 < 1/X12 or 1/X23 >

1/X12. These possibilities are illustrated in Fig. 15.

If 7313 - 7'323 < 0 (i. e., 7313 < 7323, or U213 < U113), we have

1 -- /7212 >0 (50)
b12 7313 - 7323
1 -7121 < 0. (51)

X12 7313 - '7323

(52)

One can also show
min 1 1 <1_<max (53)

b13 b12 - b23 G b12

and
1 1 1
-< - - (54)

X12 X23 X13
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LR2  LR 2

7r2

7r73

73r

LR1  LR,

(a) (b)

Fig. 14. Example ideal observer decision rules for the case Y313 - Y323 > 0 and 1/X23 0 0. In (a), the "l-vs.-3" line can lie

anywhere between the two dashed lines shown (the region between the horizontal dashed and dotted lines is excluded because

X13 > 0, and therefore 1/X13 > 0); observations in the unlabeled region to the left of this line will be decided "1r3", and those

to the right of line will be decided "ir,". In (b), the "l-vs.-3" line can lie anywhere in the unlabeled region (provided it shares

the intersection point of the "l-vs.-2" and "2-vs.-3" lines shown); observations to the left of this line will be decided "7r3", and

those to the right of this line will be decided "7r,".

LR 2

LR 2

"72,,- /T

7n3

7l1

\73

LR 1  LR 1

(a) (b)

Fig. 15. Example ideal observer decision rules for the case 7313 - 7323 > 0 and 1/X23 > 0. In (a), the "l-vs.-3" line can lie

anywhere in the unlabeled region; observations to the left of this line will be decided "73", and those to the right of this line

will be decided "7rn". In (b), the "1-vs.-3" line can lie anywhere between the "l-vs.-2" and "2-vs.-3" lines (provided it shares

their intersection point); note that observations in this region will be decided "7r2" regardless of the position of this line.
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LR 2  LR 2

L,' 1 "LRR

7 .2

.. _R. LR1•

(a) (b)

Fig. 16. Example ideal observer decision rules for the case 'Y313 - '323 < 0 and 1/b 13 < 0. In (a), the "2-vs.-3" line can

lie anywhere between the two dashed lines shown (the region between the vertical dashed and dotted lines is excluded because

b23 > 0, and therefore 1/b 2 3 _> 0); observations in the unlabeled region above this line will be decided "7r2", and those

below this line will be decided "7ra". In (b), the "2-vs.-3" line can lie anywhere in the unlabeled region (provided it shares

the intersection point of the "l-vs.-2" and "l-vs.-3" lines shown); observations above this line will be decided "7r2", and those

below this line will be decided "7r3".

If 1/b 13 < 0, then (53) immediately reduces to 1/b1 3 < 1/b 23 • 1/b 12 (by (50), we are

considering a special case in which 1/b 12 > 0). This is illustrated in Fig. 16 for the slightly

different situations M 12 < M 13 and M 12 _> M 13 . If, on the other hand, 1/b13 > 0, then (53)

and (54) together imply two possible situations, depending on whether 1/b13 < 1/b12 or 1/b13 >

1/b12. These possibilities are illustrated in Fig. 17.

Finally, we consider the case '/323 - 'Y313 = 0 (i. e., 'Y313 = ^/323, or U213 = U113), in which both

1/b 12 and 1/X12 are infinite. We now have
1 1

-< (55)
b13 -b2

and
1 1 (6
-- < -. (56)

X23 X13

Together, (55) and (56) can be considered either a special case of the inequalities (53) and

(54), if we take 1/b12 = +oo and l/x12 = -oc; or of the inequalities (48) and (49), if we
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q

LR 2

LR2  7F2

7219

.- '•'"" ,713,,7-3' ,,.

LR 1  LR 1

(a) (b)

Fig. 17. Example ideal observer decision rules for the case "Y313 - •'323 < 0 and 1/b 13 > 0. In (a), the "2-vs.-3" line can lie

anywhere in the unlabeled region; observations above this line will be decided "7r2", and those below this line will be decided

"7r3". In (b), the "2-vs.-3" line can lie anywhere between the "1-vs.-2" and "1-vs.-3" lines (provided it shares their intersection

point); note that observations in this region will be decided "7ri" regardless of the position of this line.

take 1/b12 = -cc and X12 = +00. This situation, for the slightly different cases I/X23 •5 0 and

1/X23 > 0, is illustrated in Fig. 18.

Notice that every figure in this section has one or more corresponding figures in Sec. IV

(depending on the possible values of the undetermined decision boundary parameter being

illustrated in that figure). Specifically,

Fig. 14(a) •= Figs. 4(a), 8(a), 7(a)

Fig. 14(b) •= Fig. 7(b)

Fig. 15(a) == Figs. 4(a), 8(a), 6(a)

Fig. 15(b) => Figs. 4(b), 6(b), 8(a)

Fig. 16(a) = Figs. 6(a), 7(a), 8(b)

Fig. 16(b) == Fig. 7(b)

Fig. 17(a) == Fig. 5(a)

Fig. 17(b) •= Fig. 5(b)

Fig. 18(a) =: Figs. 5(a), 8(b), 7(a), 7(b)

Fig. 18(b) =€ Figs. 5(a), 8(b), 6(a), 6(b)
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'7r29"

,,..',."'

7r3 /

LR1  LR 1

(a) (b)

Fig. 18. Example ideal observer decision rules for the case a313 - Y323 = 0. In (a), the "l-vs.-Y' line can lie anywhere between

the two dashed lines shown (the region between the horizontal dashed and dotted lines is excluded because 1/X1a Ž_ 0);

observations in the unlabeled region to the right of this line will be decided "7r,", and those to the left of this line will be

decided "7r3". In (b), the "1-vs.-Y' line can lie anywhere in the unlabeled region; observations to the right of this line will be

decided "7r,", and those to the left of this line will be decided W73.

That is, none of the conditions derived in this section are inconsistent with those derived in

the preceding sections.

VII. DISCUSSION AND CONCLUSIONS

The repetitive nature of the algebraic manipulations given in the preceding sections should not

be allowed to distract from the fundamental point being made: given the locations of two of the

decision boundary lines, the location of the third is not completely arbitrary. That is, aside from

the obvious (given (6)-(8)) constraint that the lines must share a common intersection point, it

can also be shown that the slope of the third line is constrained by the slopes of the first two.

The significance of this result may be difficult to appreciate at first glance. It is perhaps best

illustrated by comparison with the two-class classifier, for which the ROC operating point coor-

dinates (e. g., the true-positive fraction (TPF) and false-positive fraction (FPF)) are determined

by a single decision criterion -y, which is free to vary without restriction throughout its domain

of definition. For the two-class ideal observer, in particular, an observation is decided "positive"

(assigned to the class 7r,) if LR 1 > -y, where -y can take on any nonnegative value. Furthermore,

the FPF and TPF are related in a very simple way to the cdfs of LR 1, and are thus monotonic

21



in the decision criterion -y. For the three-class ideal observer, this straightforward relationship

is lost; indeed, Figs. 5(b), 7(b), 10(b), 12(b), 15(b), and 17(b) show that for certain values of

four of the five decision criteria 7•ji, the misclassification probabilities (i. e., the ROC operating

point coordinates) can be independent of the fifth decision criterion.

More succinctly, the relationship between the decision criteria and the misclassification prob-

abilities is not one-to-one, as it is for the two-class ideal observer. A correct formulation of

the misclassification probabilities as functions of the decision criteria, necessary for an explicit

calculation of the ideal observer's ROC hypersurface given the decision variable probability

density functions, will require careful consideration of this issue (and no doubt others yet to be

investigated).
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